Short Communication / Kısa Bilimsel Çalışma

Systemic toxoplasmosis in a kangaroo (Macropus sp.)

Yonca Betil KABAK¹, Tolga GÜVENÇ¹, Oğuz KUL², Ahmet DENİZ³, M.Yavuz GÜLBAHAR¹

Summary: This paper describes systemic toxoplasmosis in a brush kangaroo died after diagnosed with chronic diarrhoea in a local zoo. Macroscopically, widespread subcutaneous petechial haemorrhagies, 100 ml sero-sanguineous fluid in the abdominal cavity, many nodular structures on omentum and fat tissues with dilatation in suberosal vessels of gastric and small intestines were observed. Microscopically, necrotic bronchointerstitial pneumonia in the lungs and multiple areas of necroses with pyogranulomatous inflammation in the myocardium, adrenal glands and tunic muscularis of stomach and small intestines were detected. The pancreas and surrounding abdominal adipose tissues had multifocal coalescing acellular necroses conjoined with pyogranulomatous inflammation. Free and/or intracellularly located Toxoplasma gondii-like granular structures showed co-association with necrotic lesions. Free granular structures and necrotic areas exhibited strong immunoreactivity to polyclonal anti-T.gondii antibodies whereas reaction was negative for Neospora caninum and Leishmania sp.. Nested-PCR designed to amplify a 97 bp long specific part in B1 gene of T. gondii gave positive results. In conclusion, the first case of systemic toxoplasmosis in a kangaroo from a local zoo in Turkey was diagnosed by detailed histochemical, immunoperoxidase technique and PCR.

Key words: Immunoperoxidase, kangaroo, PCR, Toxoplasma gondii, toxoplasmosis.

Bir kanguruda (Macropus sp.) sistemik toksoplazmozis

Anahtar sözcükleri: Immunoperoxidaz, kanguru, PCR, Toxoplasma gondii, toksoplazmozis.

Toxoplasma gondii (T. gondii) is a protozoan parasite of wild and domestic felids with an unusually wide range of intermediate hosts. Toxoplasmosis is common in many warm-blooded animals and human (4,6,13,15,17). It is not only a major cause of congenital disease and abortion in human and domestic animals, but also a life-threatening opportunistic infection for immunologically vulnerable hosts (2,3). This is a widespread protozoan in Turkey, therefore, several experimental studies nearby studies representing pathologic and epidemiologic findings of naturally infected animals are present (10,11,12,14). Wallabies and Australian marsupials are considered among the most susceptible species to toxoplasmosis (2,5,7,17,18). Their vulnerability to toxoplasmosis is explaining with increased stress factors and immunosupression due to zoo conditions and/or their possibly infrequent contact with feline species during evolution processes (5,6,18). Toxoplasmosis can cause sudden deaths with the absence of prominent clinical findings in captive and wild Australian marsupials, is not always fatal (1,3,4,7,9,18). Clinical findings can be associated with respiratoric, neurologic and gastrointestinal disorders (9,17,18). In the differential and definitive diagnosis of T. gondii infections, serologic (e.g. IFA, Sabin Feldman Dye test) (3,4,7,9), ultrastructural (2,8), immunohistochemical (7,8,9,11,12), molecular examinations

DOI: 10.1501/Vetfak_0000002476
Ankara Üniv Vet Fak Derg, 58, 209-212, 2011
(1) and bioassay studies in experimental animals (14,18) generally take place among the main diagnostic tools.

In the present report, fatal toxoplasmosis in a zoo kangaroo was investigated by detailed macroscopic, histopathologic, immunohistochemical and PCR examinations. According to literature, this study is suggested to be the first example of toxoplasmosis in wallabies in Turkey.

A dead adult female brush kangaroo (Macropus irma/ Western brush wallaby) was introduced to Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Turkey, from a local zoo. In necropsy, samples were taken from brain, heart, lung, liver, spleen, kidney, pancreas, adrenal glands, stomach, small and large intestines, regional lymph nodes, omentum, trachea, oesophagus, tongue and skeletal muscles. All tissue samples were fixed in 10% neutral buffered formalin for 24 hours, embedded in paraffin wax, and sectioned at 5 µm thickness. Prepared sections were stained with hematoxylin&eosin (HE), periodic acid-Schiff (PAS), Ziehl-Neelsen (ZN) and Grocott’s methenamine silver (GMS) methods (16). Additional sections were immunostained for T. gondii, Neospora caninum and Leishmania sp. using polyclonal antibodies and standard streptavidin-biotin peroxidase complex method (ABC-P) with a commercial kit (Zymed, USA). The reaction product was visualized by aminoethylcarbazole (AEC) chromogen (Zymed, USA) and counterstained with Gill's haematoxylin. Nested-PCR was performed to confirm T. gondii infection using 2 primer sets. In the first step; 194 bp part of B1 gene of T.gondii (Accession number; AF179871) was amplified using Toxo1 for: 5' - GGAACGTGCATCCGTTCATGAG-3' and Toxo2 rev: 5' - TTCTTTAAGCGGTCTGGTGC-3’ and in the second step a specific 97 bp part of the T. gondii B1 gene was targeted in previously amplified template DNA using Toxo3 for: 5' - TGCATAGGTTGCCAGTCACTG-3' and Toxo4 rev 5'-GGCGACCAATCTGCGAATACACC-3'

In macroscopic examination, subcutaneous petechial haemorrhages at the lateral of abdominal and thoracic regions and approximately 100 ml sero-sanguineous fluid were observed in abdominal cavity. There were mesenterial and pancreatic lymph node edema, nodular structures scattered throughout the omentum and petechial haemorrhages on the gastric and intestinal serosa. Cranial lobes of the lungs were consolidated.

Macroscopically, severe macrophage and lymphocyte infiltrations were present in the lamina propria and submucosa of the stomach and the small intestines in addition to mononuclear cell infiltrations in the areas adjacent to foci of necroses in some muscle fibers. Inflammation and focal necrotic areas were determined in the adrenal medulla, pancreatic parenchyma, peripancreatic (Fig. 1A) and abdominal fat tissues. Steatitis in fat tissues was characterized by multifocal to coalescing acellular necrosis, pyogranulomatous inflammation and peripherally active chronic fibrosis. Inflammatory cells consisted mostly of macrophages, lymphocytes with a few neutrophil leucocytes. Coagulation necrosis and lymphocyte infiltration in portal triad were also observed. There were necrosis and lymphoid depletion in the germinal centers of lymphoid follicles. Additionally, sinusoidial macrophage infiltrations in mesenterial lymph nodes and spleen were noticed. Severe hyperemia in the lungs, oedema, lymphocyte and macrophage infiltrations in interalveolar septal tissue and necrotic bronchiolitis were observed. A focal calcification area confined by a delicate fibrous connective tissue containing lymphocytes and extra and/or intracellular T. gondii tachyzoites were detected. There were multifocal necroses, focal gliosis and meningitis in the brain. Focal necrosis, interstitial macrophages and lymphocyte infiltration were present in the heart and skeletal muscles. Some necrotic areas were calcified in the heart. Free and/or intracellular tachyzoites of the parasite were readily detected in sections of the small intestine, gut, heart, skeletal muscle, pancreatic lymph node and omentum. Tachyzoites were also detected in the granulomatous inflammation occurred in pancreas and adipose tissue around the mesenterium (Fig. 1B), pancreatic lymph nodes and kidneys. PAS and GMS stains were applied to the tissue sections containing various forms of the parasite and results appeared negative. Acid fast bacteria were not observed at the Ziehl Neelsen staining of the lung section showing necroses and calcifications. Immunoperoxidase tests were positive for T. gondii (Fig. 1C) but negative for N. caninum and for Leishmania sp.. T. gondii tissue cyst-like structures, free or intracellular tachyzoites showed red in colour granular and cluster-like T.gondii specific immunoreactivities with a varying degree depending on the antigenic density. Molecular confirmation was also established by the observation of T. gondii specific DNA
bands (97 bp) in agarose gel after two steps nested-PCR procedure (Fig. 1D).

Toxoplasmosis has been reported in captive wallabies and kangaroos from zoos of various parts of the world (1,2,3,6). Disease generally progresses subclinically in mankind and animals (6,10,13,14,15), while it causes sudden deaths in kangaroos (3,4,9,18). Oocyte shedding subclinically infected stray cats are suspected to be the source of toxoplasmosis in kangaroos (1,4,6).

Toxoplasmosis results with sudden deaths in kangaroos; nevertheless, toxoplasmosis can also show clinical symptoms of diarrhoea, weight gain, tiredness, respiratory and neurologic disorders (2,4,5,6,17). In this case, the zoo veterinarian reported that the kangaroo exhibited only diarrhea symptom prior to its death.

Lesions are determined in many tissues as a result of the systemic infections occurred by toxoplasmosis in kangaroo. Concordant with literature, performed necropsy revealed congestion, edema and consolidation in lungs (1,2,3,7,9), lymph node enlargement (3,5,18) and sero-sanguineous fluid accumulation in the abdominal cavity (1,3,17,18). However, it was not noticed, many gross findings related with toxoplasmosis reported in literature such as, splenomegaly (3,5,7,18), sero-sanguinous fluid accumulation in the thoracic cavity and in pericardium (1,2,7,17), focal ulcers and haemorrhagia at the small intestines (1,2,5,17,18), multiple pale foci at myocardium (1, 9, 17,18), enlargement and nutmeg scene at liver (1, 17), haemorrhage at heart, kidneys and lymph nodules (1), malasia at brain (5).

Moreover, the present case showed steatitis in abdominal fat tissues. In kangaroo, steatitis associated with protozoan parasites has been rarely encountered in veterinary literature. Dubey and Hartley (8) reported...
steatitis in adipose tissue of a red kangaroo associated with a coccidian-like protozoon. However, they could not identify the parasite by immunohistochemical and ultrastructural examinations. The present case was positive for *T. gondii* antiserum. Moreover, grossly nodular structures were observed in the omentum. In addition to these findings, microscopic detection of multifocal granulomatous inflammation in the lung was firstly diagnosed in this study.

In conclusion, toxoplasmosis in a zoo kangaroo in Turkey is firstly reported by detailed description of its histopathologic, immunohistochemical, and PCR findings.

Acknowledgment

This paper was presented as a poster in IV. National Congress of Veterinary Pathology, 29 October- 02 November 2008, Antalya, Turkey.

References

Geliş tarihi: 30.06.2009 / Kabul tarihi: 29.09.2010

Address for correspondence:

Yonca Betil Kabak
Ondokuz Mayıs University, Faculty of Veterinary Medicine Department of Pathology
55139 Kurupelit- SAMSUN, TURKEY.

e-mail: ybkabak@omu.edu.tr