FLAVONOIDS FROM GONOCYTISUS PTEROCIADUS

GONOCYTISUS PTEROCIADUS BiTKiSiNiN FLAVONOİTLERİ

Fatma TOSUN, Çiğdem AKYÜZ KIZILAY

Gazi University, Faculty of Pharmacy, Department of Pharmacognosy,
06330 Hipodrom-Ankara, TURKEY

ABSTRACT

Ten flavonoids were isolated from the aerial parts of Gonocytisus pterocladus and identified using thin-layer chromatography, melting points and spectroscopic methods (UV and H NMR) as apigenin, chrysoeriol, luteolin, luteolin 7-O-glucoside, luteolin 7-O-rutinoside, vitexin, isovitexin, rhamnosyl vitexin, orientin and isoorientin.

Key words: Gonocytisus pterocladus, flavonoids

ÖZET

Gonocytisus pterocladus bitkisinin topraküstü kısımlarından izole eden 10 flavonoit ince tabaka kromatografisi, ergime noktasi ve spektroskopik yöntemler kullanılarak apigenol, krizoeriyol, luteolol, luteolol 7-O-glukozit, luteolol 7-O-rutinozit, vitexin, izoviteksin, ramnozil vitexin, orientin ve izoorientin olarak teshis edilmiştir.

Anahtar kelimeler: Gonocytisus pterocladus, flavonoitler

INTRODUCTION

The genus of Gonocytisus Spach (Fabaceae) is represented by three species G. angulatus (L.) Spach, G. dirmilensis Hub.-Mor. and G. pterocladus (Boiss.) Spach in Turkish flora (1). We previously reported alkaloids from these three species (2-4) and flavonoids from G. angulatus and G. dirmilensis (5, 6). In this paper, the flavonoids of G. pterocladus which have not been studied before were reported.
MATERIAL AND METHODS

Plant material

The research material of *Gonocytisus pterocladus* was collected from Narhca (Hatay-Turkey) during the flowering period. Voucher specimen is preserved in "Ankara Üniversitesi Eczacılık Fakültesi Herbaryumu", Ankara, Turkey (AEF No. 19606).

Extraction and isolation

After drying and powdering, the plant material was extracted with MeOH in a Soxhlet apparatus for 40 hours and the solvent was evaporated under vacuum to dryness. The crude residue was dissolved in H$_2$O/CH$_3$OH (90:10) and soluble part was extracted with petrol and EtOAc successively. The EtOAc fraction was dried with anhydrous Na$_2$SO$_4$ and evaporated under vacuum to give a flavonoid mixture. Flavonoids were isolated by column chromatography and preparative thin-layer chromatography.

General experimental procedures

'\text{H} \text{NMR}$ spectra were recorded on a Bruker 400 MHz spectrometer with d$_6$-dimethylsulphoxide and tetramethylsilane as internal standard. UV spectra were recorded on a Beckman DU 650 UV-vis Spectrophotometer cabled to Star LC-20 printer recorder. Melting points were determined on a Electrothermal 9200 Digital Melting Point Apparatus and uncorrected. Thin-layer chromatography was performed on silica gel 60 F$_{254}$ plates (Merck No.5554) in two solvent systems S$_1$: CHCl$_3$/CH$_3$OH (80:10) and S$_2$: CHCl$_3$/CH$_3$OH/H$_2$O (65:25:2). Column chromatography was performed on silica gel 60 (0.040-0.063mm, Merck No.9385) column with S$_2$ solvent system. Preparative thin-layer chromatography was carried out using Si and S$_2$ solvent systems on silica gel 60 F$_{254}$ plates (Merck No. 5744).

RESULTS AND DISCUSSION

In the current research, ten flavonoids were isolated from the aerial parts of *G. pterocladus* and identified by thin-layer chromatography, melting points and spectroscopic methods (UV and 'H NMR) as apigenin, chrysoeriol, luteolin, luteolin 7-O-glucoside, luteolin7-0-rutinoside, vitexin, isovitexin, rhamnosyl vitexin, orientin and isoorientin. Among these, luteolin 7-O-glucoside is the major flavonoid. Apigenine, luteolin 7-O-glucoside and isoorientin was not found in the other two Gonocytisus species and this is the first report of these compounds from Gonocytisus species. Physical and spectral properties of chrysoeriol,
luteolin, luteolin-7-O-rutinoside, vitexin, isovitexin, rhamnosyl vitexin and orientin were given in our earlier papers (5, 6).

Apigenin

Mp 347-9 °C. UV \(\lambda_{max} \) (CH\(_3\)OH) 267, 296, 336 (NaOCH\(_3\)) 275, 324, 392 (AlCl\(_3\)) 276, 301, 348, 384 (AlCl\(_3\)/HCl) 276, 299, 340, 381 (NaOAc) 274, 301, 376 (NaOAc/H\(_3\)B\(_3\)) 268, 302, 338. \(^1\)H NMR (5 ppm) 6.19 (IH, d, H-6, J=2.2 Hz), 6.38 (IH, s, H-3), 6.49 (IH, d, H-8, J=2.2 Hz), 6.87 (2H, d, H-3', H-5', J=8.3 Hz), 7.78 (2H, d, H-2', H-6', J=8.5 Hz), 12.82 (3H, s, Ar-OH).

Luteolin 7-O-glucoside

Mp 254-6 °C. UV \(\lambda_{max} \) (CH\(_3\)OH) 255, 267, 348 (NaOCH\(_3\)) 263, 300, 394 (AlCl\(_3\)) 274, 298, 329, 432 (AlCl\(_3\)/HCl) 273, 294, 358, 387 (NaOAc) 259, 266, 365, 405 (NaOAc/H\(_3\)B\(_3\)) 259, 372. \(^1\)H NMR (5 ppm) 3.18-3.71 (6H, m, glucosyl protons), 5.06 (IH, d, H-1", J=7.3 Hz), 6.44 (IH, d, H-6, J=2.1 Hz), 6.73 (IH, s, H-3), 6.78 (IH, d, H-8, J=2.1 Hz), 6.91 (IH, d, H-5', J=8.3 Hz), 7.4 (IH, d, H-2', J=2.3 Hz), 7.42-7.44 (IH, dd, H-6', J=8.1 Hz), 12.97 (3H, s, Ar-OH).

Isoorientin

Mp 234-5 °C. UV \(\lambda_{max} \) (CH\(_3\)OH) 242, 255, 271, 349, (NaOCH\(_3\)) 267, 278, 337, 406, (AI\(_3\)) 278, 302, 332, 429, (AI\(_3\)/HCl) 265, 279, 296, 361, 384, (NaOAc) 276, 323, 393, (NaOAc/H\(_3\)B\(_3\)) 265, 377, 429 nm. \(^1\)H NMR (5 ppm) 3.13-3.62 (6H, m, glucosyl protons), 4.87 (IH, s, H-1"), 6.41 (IH, s, H-3), 6.57 (IH, s, H-8), 6.78 (IH, d, H-5', J=8.2 Hz), 7.68 (2H, d, H-2", H-6'), J=8.4 Hz), 13.15 (4H, s, Ar-OH).

ACKNOWLEDGEMENT

This research was financially supported by the Research Foundation of the Gazi University (Project No: 02/99-05).
REFERENCES

Received: 06.02.2003
Accepted: 19.03.2003