On Almost-Continuity And Almost-A Continuity
Of Real Functions

by

E. ÖZTÜRK

Faculté des Sciences de l'Université d'Ankara
Ankara, Turquie
La Revue "Communications de la Faculté des Sciences de l'Université d'Ankara" est un organe de publication englobant toutes les disciplines scientifiques représentées à la Faculté des Sciences de l'Université d'Ankara.

La Revue, jusqu'à 1975 à l'exception des tomes I, II, III était composée de trois séries
- Série A: Mathématiques, Physique et Astronomie,
- Série B: Chimie,
- Série C: Sciences Naturelles.

A partir de 1975 la Revue comprend sept séries:
- Série A₁: Mathématiques,
- Série A₂: Physique,
- Série A₃: Astronomie,
- Série B: Chimie,
- Série C₁: Géologie,
- Série C₂: Botanique,
- Série C₃: Zoologie.

En principe, la Revue est réservée aux mémoires originaux des membres de la Faculté des Sciences de l'Université d'Ankara. Elle accepte cependant, dans la mesure de la place disponible les communications des auteurs étrangers. Les langues Allemande, Anglaise et Française seront acceptées indifféremment. Tout article doit être accompagnés d'un résumé.

Les articles soumis pour publications doivent être remis en trois exemplaires dactylographiés et ne doit pas dépasser 25 pages des Communications, les dessins et figures portes sur les feuilles séparées devant pouvoir être reproduits sans modifications.

Les auteurs reçoivent 25 extraits sans couverture.

l'Adresse : Dergi Yayın Sekreteri,
Ankara Üniversitesi,
Fen Fakültesi,
Beşevler–Ankara
On Almost-Continuity And Almost-A Continuity
Of Real Functions

E. ÖZTÜRK

Dpt. Of Mathematics, Faculty of Science, Ankara University, Ankara

SUMMARY

The purpose of this note is to give some new concepts of continuity for real functions and
to investigate the relations between concepts of continuity.

1. INTRODUCTION

Let $A = (a_{nk})$ be an infinite matrix of real numbers and $x = (x_k)$ be
a sequence of real numbers. The sequence $((Ax)_n)$ defined by

$$(Ax)_n = \sum_{k=1}^{\infty} a_{nk} x_k$$

(1)
is called the A-transform of x whenever the above series converges for
$n = 1, 2, \ldots$. The sequence x is said to be A-summable to x_0 if the
sequence $((Ax)_n)$ converges to x_0. A is called conservative if $x \in c$ implies $((Ax)_n \in c$, where c is the linear space of convergent sequences. A is
called regular if it is conservative and preserves the limit of each convergent
sequence. A is called strongly regular if A is regular and

$$\lim_n \sum_{k=1}^{\infty} |a_{nk} - a_{n,k+1}| = 0$$

(2)

[3]. Throughout this study R stands for real numbers and N denotes
the set of positive integers.

2. Definitions.

Let m denote the linear space of bounded sequences.

A sequence $x \in m$ is said to be almost convergent and s is called its generalized
limit if each Banach limit of x is s. [3]. The class F of almost con-
vergent sequences was characterized by G. G. Lorentz [3], who proved that a sequence \(x = (x_k) \) is almost convergent if and only if

\[
\lim_p \frac{x_n + x_{n+1} + \cdots + x_{n+p-1}}{p} = s
\]

(uniformly in \(n \)). We shall write \(F\text{-}\lim x = s \) or \(\text{Lim } x = s \), shortly. We denote by \(Lx \) the following sequence

\[
\left(\frac{1}{p} \sum_{j=n}^{n+p-1} x_j \right).
\]

If the method \(A \) sums all almost convergent sequences then \(A \) is called strongly regular [3]. It is clear that a convergent sequence is almost convergent and its limit and generalized limit are identical.

We shall now speak of some basic concepts. Let \(X, Y \) be topological spaces. Then \(f: X \rightarrow Y \) is called continuous on \(X \) if and only if the inverse image of every open set in \(Y \) is open in \(X \) and \(f \) is called sequentially continuous at a point \(x_0 \in X \) if and only if for every sequence \(x_n \rightarrow x_0 \) (in \(X \)) we have \(f(x_n) \rightarrow f(x_0) \) (in \(Y \)). It is known that if \(f: X \rightarrow Y \) is continuous on \(X \), then \(f \) is sequentially continuous on \(X \), but not conversely in general. Furthermore, if \(X, Y \) are metric spaces, then the sequentially continuity on \(X \) implies continuity on \(X \) [4]. Thus the concepts of sequential continuity and continuity coincide for \(R \), since \(R \) is a metric space with the usual modulus metric.

A function \(f: R \rightarrow R \) is called \(c \)-continuous at the point \(x_0 \in R \) if

\[
(c, 1) - \lim f(x_n) = f(x_0) \quad \text{whenever} \quad (c, 1) - \lim x_n = x_0 [6],
\]

where \((c, 1) \) is the first Cesàro mean and \((c, 1) - \lim x_n = x_0 \) means that

\[
\frac{x_1 + x_2 + \cdots + x_n}{n} \rightarrow x_0 \quad (n \rightarrow \infty)
\]

Similarly, \(A \)-continuity of \(f \) was defined by Jozef Antoni-Tibor Salat [1].

We shall give some new additional definitions:

Definition (2.1). Let \(x = (x_n) \) be a sequence in \(R \). We shall say that a function \(f: R \rightarrow R \) is almost continuous at the point \(x_0 \in R \) if \(F\text{-}\lim (f(x)) = f(x_0) \) whenever \(F\text{-}\lim x = x_0 \).
Definition (2.2). Let $A = (a_{nk})$ be a regular matrix of real numbers and $x = (x_n)$ be a sequence in \mathbb{R}. We shall say that a function $f: \mathbb{R} \to \mathbb{R}$ is A-almost continuous at $x_0 \in \mathbb{R}$ if A-lim \ (Lf(x)) = f (x_0)$ whenever A-lim \ (Lx) = x_0.$

Definition (2.3). Let the matrix $A = (a_{nk})$ and the sequence $x = (x_n)$ be as the definition (2.2). We shall say that a function $f: \mathbb{R} \to \mathbb{R}$ is almost A-continuous at $x_0 \in \mathbb{R}$ if F-lim \ (A (f(x))) = f (x_0)$ whenever F-lim \ (Ax) = x_0.$

In the case of A is a unit matrix the definitions (2.2) and (2.3) are equivalent.

3. Relations between the concepts of continuity.

Theorem (3.1). If a function $f: \mathbb{R} \to \mathbb{R}$ is A-almost continuous at $x_0 \in \mathbb{R}$ then f is almost continuous at the same point.

Proof. Let $x = (x_n)$ be a sequence in \mathbb{R} such that Lx converges to x_0. Since f is A-almost continuous at $x_0 \in \mathbb{R}$

A-lim \ (Lx) = x_0$ implies A-lim \ (Lf(x)) = f (x_0),

and so,

Lim \ $x = x_0$ implies A-lim \ (Lx) = x_0 implies A-lim \ (Lf(x)) = f(x_0).

Hence, $Lim \ x = x_0$ implies A-lim \ (Lf(x)) = f (x_0),$

that is, we have A-lim \ (Lf(x)) = f (x_0) for very sequence Lx converging to x_0. On the other hand, every subsequence of Lx converges to x_0 since Lx converges to x_0. It is easy to see that to each subsequence of $Lf (x)$ there corresponds a subsequence of Lx which is convergent to x_0. Therefore, A-soms every subsequence of $Lf(x)$. Hence the sequence $Lf(x)$ is convergent [2]. Moreover the sequence $Lf(x)$ must converge to $f (x_0)$ since A is regular and A-lim \ (Lf(x)) = f (x_0)$ This completes the proof.

Theorem (3.2). Let $f: \mathbb{R} \to \mathbb{R}$ be an almost continuous function at $x_0 \in \mathbb{R}.$ Then f is continuous at x_0 if and only if

$$f (x_{n+1}) - f (x_n) \to o \ (n \to \infty) \quad (5)$$
for each sequence \(x = (x_n) \) converging to \(x_0 \).

Proof. Necessity. Let \(f \) be continuous at \(x_0 \in \mathbb{R} \). Then,

\[x_n \to x_0 \quad (n \to \infty) \implies f(x_n) \to f(x_0) \quad (n \to \infty). \]

Hence, for every number \(\varepsilon > 0 \) there exists \(n_0(\varepsilon) \) such that

\[|f(x_n) - f(x_0)| < \frac{\varepsilon}{2} \]

for each \(n > n_0(\varepsilon) \). Therefore, for \(n > n_0(\varepsilon) \) we have

\[|f(x_{n+1}) - f(x_n)| \leq |f(x_{n+1}) - f(x_0)| + |f(x_n) - f(x_0)| < \varepsilon. \]

Sufficiency. Let the sequence \(x = (x_n) \) converge to \(x_0 \) and \(f \) be an almost continuous function at \(x_0 \in \mathbb{R} \). Then for any number \(\varepsilon > 0 \), we can choose a number \(p \) large enough such that

\[\left| \frac{1}{p} \left(f(x_n) + f(x_{n+1}) + \ldots + f(x_{n+p-1}) \right) - f(x_0) \right| < \frac{\varepsilon}{2} \quad (6) \]

for all \(n \in \mathbb{N} \).

Let us take \(\varepsilon_1 = \frac{\varepsilon}{p-1}, \) (\(p > 1 \)). By (5), for the number \(\varepsilon_1 > 0 \) we select a number \(n_0 \) so large that

\[|f(x_n) - f(x_{n+1})| < \varepsilon_1 \]

for all \(n > n_0 \). Therefore, for \(n > n_0 \) we get

\[|f(x_n) - f(x_{n+p-1})| \leq (p - 1) \varepsilon_1. \quad (7) \]

Let \(\max(n_0, p) = M \). By (6) and (7), for \(n > M \) we have

\[
|f(x_n) - f(x_0)| \leq |f(x_n) - \frac{f(x_n) + \ldots + f(x_{n+p-1})}{p} | \\
+ \left| \frac{f(x_n) + \ldots + f(x_{n+p-1})}{p} - f(x_0) \right| \\
\leq \frac{1}{p} \left| p \cdot f(x_n) - \sum_{j=n}^{n+p-1} f(x_j) \right| + \frac{\varepsilon}{2} \\
\leq \frac{1}{p} \sum_{j=n}^{n+p-1} |f(x_n) - f(x_j)| + \frac{\varepsilon}{2}
\]
\[\leq \frac{1}{p} \left(1 + 2 + \ldots + (p - 1) \right) \varepsilon_1 + \frac{\varepsilon}{2} = \varepsilon \]

This completes the proof.

In a recent paper, we have defined the new methods of summability by a suitable rearrangement of the elements on each row of a given matrix summability method [5]. In connection with this we can give the following:

Theorem (3.3). Let \(A = (a_{nk}) \) be a strongly regular matrix and \(f: R \rightarrow R \) be a function such that the sequence \(f(x) \) is bounded whenever \(x = (x_k) \) is bounded. Then the concepts of the A-continuity and the \(A_\pi \)-continuity corresponding to those permutation functions each of which has a symmetrical mapping (see, definition in [5]) on disjoint blocks of the positive integers, are equivalent.

Proof. We showed in theorem 2.1 [5] that for every bounded sequence \(x = (x_k) \) we have

\[\lim_{n} |(Ax)_n - (A_\pi x)_n| = 0. \]

(8)

Let \(A_\pi \)-lim \(x_n = x_0 \) and \(f \) be \(A \)-continuous at \(x_0 \in R \). We shall show that \(A_\pi \)-lim \(f(x_n) = f(x_0) \). Since \(f \) is \(A \)-continuous at \(x_0 \in R \) we have

\(A \)-lim \(x_n = x_0 \) implies \(A \)-lim \(f(x_n) = f(x_0) \).

By (8) and since \(A \)-lim \(f(x_n) = f(x_0) \), we get \(A_\pi \)-lim \(f(x_n) = f(x_0) \). Hence, \(f \) is \(A \)-continuous at \(x_0 \in R \). In the same way one can prove that \(f \) is \(A_\pi \)-continuous at \(x_0 \in R \) if the function \(f \) is \(A_\pi \)-continuous at \(x_0 \in R \). This completes the proof.

ÖZET

Bu makalede, reel fonksiyonlar için bazı yeni süreklilik kavramları tariif edilmekte ve bu süreklilik kavramları arasındakı bağıntılar incelenmektedir.

REFERENCES

