EDITOR-IN-CHIEF
Timur DOĞU
Department of Chemical Engineering
Faculty of Sciences, University of Ankara

Managing Editors
Mustafa Alpbaz
Nizamettin Kazancı
Faculty of Sciences, University of Ankara

Series A1
Mathematics and Statistics
Editor: Yalçın Tuncer
University of Ankara

Series A2, A3
Physics, Engineering Physics and Astronomy
Editor: Erol Aygün
University of Ankara

Series B
Chemistry and Chemical Engineering
Editor: Turgut Gündüz
University of Ankara

Series C
Biology and Geological Engineering
Editor: Sevinç Karol
University of Ankara

EDITORIAL BOARD OF SERIES A1
Yalçın Tuncer, University of Ankara
Hilmi Hacisalıhoğlu, University of Ankara
Cengiz Uluçay, University of Ankara
Abdullah Altı̇n, University of Ankara
Kaya Özkın, University of Ankara

Journal is published twice a year by the Faculty of Sciences, University of Ankara. Articles and any other material published in this journal represent the opinions of the author(s) and should not be construed to reflect the opinions of the Editor(s) and the Publisher(s).

Correspondence address:
COMMUNICATIONS SECRETARY
Faculty of Sciences, University of Ankara, 06 100
Ankara, TURKEY Tel. 41. 13 17 22
A NOTE ON COMMUTATIVITY OF RINGS

MEHD. ASHRAF AND MURTAZA A. QUADRI

Department of Mathematics, Aligarh Muslim University, Aligarh, India

(Received: February 13, 1985)

ABSTRACT

In this note we prove that if R is a semi-prime ring with unity satisfying \((xy)^2 = y^2 x^2\), for all \(x, y \in R\) then R is commutative.

INTRODUCTION

This is well-known that a group \(G\) satisfying \((xy)^2 = x^2 y^2\), for all \(x, y\) in \(G\) must be commutative. E.C. Johnsen, D.L. Outcalt and Adil Yaqub [1968] proved a ring-theoretic analogue of the above result. In the present note we attempt to prove that if \(R\) is a semi-prime ring with unity satisfying \((xy)^2 = y^2 x^2\), for all \(x, y \in R\), even then \(R\) is commutative. However we give an example which shows that the results is not valid for arbitrary rings.

In preparation for the proof of this theorem, we first have the following lemmas.

LEMMA 1: If \(R\) is a semi-prime ring satisfying \((xy)^2 = y^2 x^2\) for all \(x, y \in R\), then \(R\) has no nonzero nilpotent element.

PROOF: Let \(a \in R\) such that \(a^2 = 0\). Using the hypothesis we get \((ax)^2 = 0\), for all \(x \in R\). If \(aR \neq 0\), then the above shows that \(aR\) is a nonzero nilright ideal satisfying the identity \(y^2 = 0\) for all \(y \in aR\). So by Lemma 2.1.1 of Herstein (1976) \(R\) has a nonzero nilpotent ideal. This is a contradiction since \(R\) is semi-prime. Thus \(aR = 0\), and hence \(aRa = 0\). This implies that \(a = 0\) since \(R\) is semi-prime.

LEMMA 2: If \(R\) is a prime ring satisfying \((xy)^2 = y^2 x^2\), for all \(x, y \in R\), then \(R\) has no zero divisors.
PROOF: By Lemma 1 above, R has no nonzero nilpotent elements. So by lemma 1.1.1 of Herstein (1976), R has no zero divisors since it is prime with no nonzero nilpotent element.

MAIN RESULT

THEOREM: Let R be a semi-prime ring with unity satisfying $(xy)^2 = y^2x^2$, for all $x, y \in R$, then R is commutative.

PROOF: Since R is semi-prime ring then it is isomorphic to the subdirect sum of prime rings R_2, each of which, as a homomorphic image of R, satisfies the hypothesis placed on R. So we may assume that R is prime. On replacing y by $(1 + y)$ in $(xy)^2 = y^2x^2$, we get

$$x^2y + xyx - 2yx^2 = 0 \quad (1)$$

Case I. If Char $R = 2$, then from (1) we obtain $x(xy + yx) = 0$. By Lemma 2.2, it gives that if $x \neq 0$ then $xy + yx = 0$ and $x = 0$ also yields $xy + yx = 0$. Thus in every case $xy + yx = 0$, which gives $xy = yx$, as Char $R = 2$.

Case II. If Char $R \neq 2$, then with $y = y + y^2$ in (1) we get

$$x^2y^2 + xy^2x - 2y^2x^2 = 0 \quad (2)$$

Multiply (1) on the left by y, to get

$$yx^2y + (yx)^2 - 2y^2x^2 = 0 \quad (3)$$

From (2) and (3), we have

$$xy^2x = yx^2y, \text{ for all } x, y \in R. \quad (4)$$

Substituting $(x + y)$ for y and simplifying we get,

$$x^3y + yx^3 - x^2yx - xyx^2 = 0 \quad (5)$$

On replacing x by $(1 + x)$, (5) gives

$$2(x^2y + yx^2 - 2yx) = 0 \quad (6)$$

which implies $x^2y + yx^2 - 2yx = 0$ and with $y = y + y^2$, (6) gives

$$x^2y^2 + y^2x^2 - 2xy^2x = 0 \quad (7)$$
Also (6) gives
\[
x^2y^2 = 2(xy)^2 - yx^2y
\]
and \[
y^2x^2 = 2(yx)^2 - yx^2y
\]
(8)

Now from (7) and (8), we have
\[
2(xy - yx)^2 = 0
\]
which implies that \((xy - yx)^2 = 0\). Now again by Lemma 2, \(xy = yx\), and \(R\) is commutative. This completes the proof of our theorem.

The following example shows that this theorem is not valid for arbitrary rings.

Example. Let \(R = \{ (a, b) \mid a, b \text{ are integers} \} \). It is easily verified that \((xy)^2 = y^2x^2\), for all \(x, y \in R\). However \(R\) is not commutative.

REFERENCES
