Matrix Transformations and Generalized Almost Convergence

by

MURSALEEN

Faculté des Sciences de l'Université d'Ankara
Ankara, Turquie
La Revue "Communications de la Faculté des Sciences de l'Université d'Ankara" est un organe de publication englobant toutes les disciplines scientifiques représentées à la Faculté.

La Revue, jusqu'à 1975 à l'exception des tomes I, II, III, était composée de trois séries:

Série A: Mathématiques, Physique et Astronomie.
Série B: Chimie.
Série C: Sciences naturelles.

A partir de 1975 la Revue comprend sept séries:
Série A1: Mathématiques
Série A2: Physique
Série A3: Astronomie
Série B: Chimie
Série C1: Géologie
Série C2: Botanique
Série C3: Zoologie

En principe, la Revue est réservée aux mémoires originaux des membres de la Faculté. Elle accepte cependant, dans la mesure de la place disponible, les communications des auteurs étrangers. Les langues allemande, anglaise et française sont admises indifféremment. Les articles devront être accompagnés d'un bref sommaire en langue turque.

Adresse: Fen Fakültesi Tebligler Dergisi Fen Fakültesi, Ankara, Turquie,
Matrix Transformations and Generalized Almost Convergence

MURSALEEN

Department of Mathematics,
Aligarh Muslim University,
ALIGARH-202001, (INDIA).

(Received 25 April 1978, and accepted 27 October 1978)

ABSTRACT

Recently M. Stieglitz introduced the concept of F_{β}-convergence of sequence and generalized the results of Eizen and Laush, King, and Shaefer for more general classes of matrices. Quite recently Ahmad and Mursaleen have extended the space F_{β} of F_{β}-convergent sequences to $F_{\beta}(p)$. In the present paper we furnish a set of necessary and sufficient conditions for each $(c_{\circ}(p), F_{o\beta}(p)), (1(p), F_{\beta})$ and $(M_{a}(p), F_{\beta})$ matrices.

1. INTRODUCTION

In 1948, Lorentz [2] introduced the concept of almost convergence. In 1973, recently M. Stieglitz [6] generalized this concept of almost convergence to F_{β}-convergence. And quite recently Ahmad and Mursaleen [1] extended this space F_{β} of F_{β}-convergent sequences to $F_{\beta}(p)$ just as c, c_{\circ} and f were extended to $c(p), c_{\circ}(p)$ and $f(p)$ respectively. For real $p_{n} > 0$ and sup $p_{n} < \infty$, we have [1],

$F_{\beta}(p) = \{ x: \lim_{n} (B_{L}x)_{n} = 0, \text{uniformly in } i, \text{for some } L \}$

$F_{o\beta}(p) = \{ x: \lim_{n} (B_{L}x)_{n} = 0, \text{uniformly in } i \}$

In particular, if $p_{n} = p > 0$ for every n, we have

$F_{\beta}(p) = F_{\beta}$ and $F_{o\beta}(p) = F_{o\beta}$. If we put $\beta = \beta_{o}$

$F_{\beta}(p)$ reduces to $c(p)$ and if $\beta = \beta_{s}$, $F_{\beta}(p) = f(p)$.

2. In this note, we prove the following theorems:

Theorem 2.1. $A \in (c_{\circ}(p), F_{q\beta}(p))$ if and only if
(i) \(N(A) < \infty \) and there exist \(r \geq 0 \) and \(B > 1 \) such that

\[
\sup_{0 \leq i < \infty} \left\{ \sum_{k} b_{nk} (i) a_{kl} \mid B \right\}^{1/p_1} < \infty
\]

\(r \leq n < \infty \)

(ii) \(\lim_{n \to \infty} \left| \sum_{i \leq k} a_{ik} \right|^{p_s} = 0 \) (uniformly in \(i, k \) fixed).

Proof. Necessity. Suppose \(A \in (c_0 (p), F_\theta (p)) \). We know the fact \(A : c_0 \to m \), hence \(N(A) < \infty \). Define \(e_k = \{ \delta_{jk} \} \), where

\[
\delta_{jk} = \begin{cases} 0 & (j \neq k), \\ 1 & (j = k). \end{cases}
\]

Since \(e_k \in c_0 (p) \), now

\[
T = \sum_{i \leq k} b_{ni} (i) \sum_{k} a_{ij} \delta_{jk}
\]

\[
= \sum_{i \leq k} b_{ni} (i) a_{ik}
\]

Therefore, for all \(k \geq 1 \), \(\delta_{jk} \to 0 \) as \(j \to \infty \), it follows that

\[
\lim_{n \to \infty} \left| \sum_{i \leq k} b_{ni} (i) \sum_{k} a_{ij} \delta_{jk} \right|^{p_s} = 0
\]

This is equivalent to (ii). Now, put

\[
f_m (x) = \sum_{l=0}^{m} \left(\sum_{k} b_{nk} (i) a_{kl} \right) x_l
\]

It is easy to see that \(\{ f_m (x) \} \) is a sequence of continuous linear functionals such that \(\lim_m f_m (x) \) exists. We note that

\[
Tx = \left| \sum_{i \leq k} (B_i (Ax))_a \right|^{p_s} = \lim_m f_m (x).
\]

Therefore, by virtue of Banach-Steinhaus theorem, it follows that \(T \in c_0 (p) \) (continuous dual space of \(c_0 (p) \)) and \(\| T \| < \infty \). Let us define for each \(r \):

\[
\gamma_{1} = \begin{cases} \frac{k}{p_1} \sgn \left(\sum_{k} b_{nk} (i) a_{kl} \right) & (0 \leq l \leq r), \\ 0 & (\text{otherwise}). \end{cases}
\]
where K is a constant. Then it follows that
\[
\begin{align*}
(r) & \quad y_1 \in c_1 (p) \\
\text{and} & \quad \left\{ \begin{array}{l}
\sum_{k=1}^{r} b_{nk} (i) a_{kl} -1/p_l < B \quad p_n \leq K \\
-K
\end{array} \right.
\end{align*}
\]
for each n and r, where $B = \delta$. Therefore (i) holds.

Sufficiency. Let us suppose that the conditions (i) and (ii) hold and that $x \in c_1 (p)$. For $C = \max (1, 2^{H-1})$ where $H = \sup p_n$, we have the inequality (see Maddox [5], p. 346)
\[
|B(Ax)_n| \leq C(I_1 + I_2)
\]
where
\[
I_1 = \sum_{l \leq l_0}^{p_n} |\sum_{k=1}^{r} b_{nk} (i) a_{kl} x_k|,
\]
and
\[
I_2 = \sum_{l > l_0}^{p_n} |\sum_{k=1}^{r} b_{nk} (i) a_{kl} x_k|.
\]
1 and n both are larger than l_0.

Since (ii) holds, therefore, there exists $n_0 > 0$ such that $n > n_0$,
\[
|\sum_{k=1}^{r} b_{nk} (i) a_{kl} x_k| < \varepsilon, \text{ uniformly in } i.
\]
Therefore, for such n

(I) \quad $I_1 < (\sum_{l \leq l_0}^{p_n} |(\sum_{k=1}^{r} b_{nk} (i) a_{kl}) x_k|)$
\[
< \varepsilon (\sum_{l \leq l_0}^{p_n} x_k) \text{ uniformly in } i.
\]

Again for $n > n_0$,

(II) \quad $I_2 < (\sum_{l > l_0}^{p_n} |(\sum_{k=1}^{r} b_{nk} (i) a_{kl}) x_k|)$
\[
< \varepsilon \text{ uniformly in } i.
\]

Hence the sufficiency follows from (I) and (II).
This completes the proof.

Theorem 2.2. A $\varepsilon (l \ (p), \ F_\beta)$ if and only if

(i) There exists $B > 1$ such that for every i

\[
\sup_n \sum_k q_k^{q_k} C(n, k, i) B < \infty \quad (1 < p_k < \infty)
\]

\[
\sup_n p_k < \infty, (0 < p_k \leq 1)
\]

where

\[
C(n, k, i) = \Sigma l b_{nl} (i) a_{lk}
\]

(ii) \(\lim_n C(n, k, i) = a_k \) (uniformly i, k fixed).

Proof. Necessity. We only consider the case $1 < p_k < \infty$.

The case $0 < p_k \leq 1$ has a similar proof. Let $A \in l \ (p), \ F_\beta$.

Define $e_k = (0, 0, ..., 0, l, 0, ...,)$. Since $e_k \in l \ (p)$, (ii) must hold.

Now $(B_1 (Ax))_n$ exists for each n and $x \in l \ (p)$. If we put $T_{n+1} (x) = (B_1 (Ax))_n$, then \(\{T_{n+1} (x)\}_n \) is a sequence of continuous real functions on $l \ (p)$ and further \(\sup_n |(B_1 (Ax))_n| < \infty \) on $l \ (p)$.

Now by uniform boundedness principle (see Lascarides and Maddox [3]) the necessity follows.

Sufficiency. For every $j \geq 1$, we have

\[
\sum_{k=1}^j C(n,k,i) q_k^{q_k} B \leq \sup_n \sum_k \sum_{l=1} |b_{nl} (i) a_{lk}| q_k^{q_k} B
\]

therefore

\[
\sum_k a_k q_k^{q_k} B \leq \lim_{j \to \infty} \lim_{n \to \infty} \sum_{k=1}^j C(n,k,i) q_k^{q_k} B
\]

\[
\leq \sup_n \sum_k q_k^{q_k} B < \infty.
\]

Thus the series $\sum_k C(n,k,i) x_k$ and $\sum_k a_k x_k$ converge (see Maddox [4]) for each n and $x \in l \ (p)$. Now, for $\varepsilon > 0$ and $x \in l \ (p)$, choose k_o such that
\begin{align*}
\sum_{k=1}^{k_0} (C(n,k,i) - \alpha_k) &< \varepsilon \ \forall \ n > n_o.
\end{align*}

By (ii) there exists \(n_o \) such that
\[
\left| \sum_{k=1}^{k_0} (C(n,k,i) - \alpha_k) \right| < \varepsilon \ \forall \ n > n_o.
\]

Since (i) holds, it follows that (see Lascarides and Maddox [3]).
\[
\left| \sum_{k=1}^{\infty} C(n,k,i) - \alpha_k \right|
\]
is arbitrarily small. Therefore,
\[
\lim_{n} \sum_{k} C(n,k,i) \ x_k = \sum_{k} \alpha_k \ x_k
\]
uniformly in \(i \). This completes the proof.

Corollary. A \(\varepsilon (l(p), F_{b}) \) if and only if

(i) Condition (i) theorem (2.2) holds,

(ii) \(\lim_{n \to \infty} C(n,k,i) = 0 \) uniformly in \(i \).

We now characterise the matrices in the class \((M_o \ (p), F_{b})\).

For \(p_k > 0 \) we define (see Maddox [4]),
\[
M_o(p) = \{ x : \sum_{k} |x_k| B < \infty \}, \quad B > 1
\]
When \(p_k = p \ \forall \ k \), we have \(M_o \ (p) = l_1 \). Also \(M_o \ (p) = l_1 \) for \(\inf p_k > 0 \).

Theorem 2.3. A \(\varepsilon (M_o \ (p), F_{b}) \) if and only if

(i) For every integer \(B > 1 \),
\[
\sup_{n,k} C(n,k,i) |B| < \infty \ (\forall \ i)
\]

(ii) \(\lim_{n} C(n,k,i) = \alpha_k \) (uniformly in \(i, k \) fixed)

Proof. Necessity. Suppose A \(\varepsilon (M_o \ (p), F_{b}) \). Since \(e_k \varepsilon M_o \ (p) \), (ii) holds. On contrary let us suppose that (i) is not true, then \(\exists \ B > 1 \) such that
\[\sup_{n,k} \left| C(n, k, i) \right| B^{1/p_k} = \infty \]

So by theorem (2.2), \(C = (C_{nk}) = (a_{nk} B^{1/p_k}) \neq (l_i, F_\beta) \) that is,

there exists \(x \in L_1 \) such that \(Cx \notin F_\beta \). Now \(y = (y_k) = (B x_k) \in M_o(p) \), but \(Ay = Cx \notin F_\beta \), which contradicts that \(A \in (M_o(p), F_\beta) \).

Sufficiency. Suppose that the conditions (i) and (ii) hold and \(x \in M_o(p) \). Then

\[
\left| \sum C(n, k, i) x_k \right| \leq \sum x_k \left| B^{1/p_k} \right| C(n, k, i) B^{1/p_k} < \infty.
\]

Now similarly as in Theorem (2.2) we have

\[
\lim_{n \to \infty} \sum_{k} C(n, k, i) x_k = \sum_{k} a_k x_k
\]

uniformly in \(i \) and hence \(A \in (M_o(p), F_\beta) \).

This completes the proof.

Finally the author is grateful to Dr. Z. U. Ahmad for his suggestions and guidance during the preparation of this paper.

REFERENCES

Prix de l'abonnement annuel

Turquie: 15 TL; Étranger: 30 TL.
Prix de ce numéro : 5 TL (pour la vente en Turquie).
Prière de s'adresser pour l'abonnement à : Fen Fakültesi Dekanlığı Ankara, Turquie.