ON THE CLASSIFICATION OF FUZZY PROJECTIVE LINES OF FUZZY 3-DIMENSIONAL PROJECTIVE SPACE

Z. AKÇA, A. BAYAR AND S. EKMEKÇİ

ABSTRACT. In this work, the classifications of fuzzy vector planes of fuzzy 4-dimensional vector space and fuzzy projective lines of fuzzy 3-dimensional projective space from fuzzy 4-dimensional vector space are given.

1. INTRODUCTION AND PRELIMINARIES

A general definition of a fuzzy n-dimensional projective space λ which is obtained from fuzzy $(n + 1)$-dimensional vector space V over some field K and a method to find a fuzzy projective line and a fuzzy projective plane are given in [3]. Firstly, the classification of fuzzy vector planes of fuzzy 4-dimensional vector space are introduced. And then we give the classification of the fuzzy projective lines of fuzzy 3-dimensional projective space, from fuzzy 4-dimensional vector space.

The following definitions and theorems concerning the basic concepts of the subject has been taken from [3] with some small modifications.

Definition 1.1. Let $\lambda : V \to [0, 1]$ be a fuzzy set on V. Then we call λ a fuzzy vector space on V if and only if $\lambda(a.\overline{u} + b.\overline{v}) \geq \lambda(\overline{u}) \land \lambda(\overline{v})$, $\forall \overline{u}, \overline{v} \in V$ and $\forall a, b \in K$.

Proposition 1. Let V be a vector space over some field K, $\overline{u}, \overline{v} \in V$ and $a \in K \setminus \{0\}$. If $\lambda : V \to [0, 1]$ is a fuzzy vector space, then we have:

(i) $\lambda(a.\overline{u}) = \lambda(\overline{u})$;
(ii) $\lambda(\overline{v}) = \sup_{\overline{u} \in V} \lambda(\overline{u})$;
(iii) if $\lambda(\overline{u}) \neq \lambda(\overline{v})$, we have $\lambda(\overline{u} + \overline{v}) = \lambda(\overline{u}) \land \lambda(\overline{v})$.

Definition 1.2. Let λ is a fuzzy vector space on V. The subspace L, (linearly) generated by $\text{Supp}(\lambda)$ (supp$(\lambda) = \{x \in V : \lambda(x) = 0\}$, is called the base vector space of λ. The dimension $d(\lambda)$ of a fuzzy vector space of V is the dimension of its base subspace.

Received by the editors April 29, 2006; Rev. Sept. 25, 2006; Accepted: Nov.14, 2006.

Key words and phrases. Fuzzy projective space, Fuzzy point, Fuzzy vector line, Fuzzy vector plane, Fuzzy projective line.

©2006 Ankara University
Definition 1.3. If U is an i–dimensional subspace of V, and (λ, U) is a fuzzy vector space, then it is called a fuzzy i–dimensional vector space on U. If $i = 1$, i.e. U is a vector line, then (λ, U) is a fuzzy vector line on U, if $i = 2$, i.e. U is a plane, (λ, U) will be called a fuzzy vector plane on U. If $i = n - 1$, then (λ, U) is called a fuzzy vector hyperplane on U.

Let V be an n–dimensional vector space over some field K, with $n \geq 2$. Let L be a vector line of V, so L is uniquely defined by some nonzero vector \bar{u}. Let α be a vector plane of the n–dimensional vector space V ($n \geq 3$), then we know that α is uniquely defined by two linearly independent vectors \bar{u} and \bar{v}.

Theorem 1.4. If $\lambda : L \rightarrow [0, 1]$ is a fuzzy vector line on L, then $\lambda(\bar{u}) = \lambda(\bar{v})$, $\forall \bar{u}, \bar{v} \in L \setminus \{\bar{0}\}$, and $\lambda(\bar{0}) \geq \lambda(\bar{u})$, $\forall \bar{u} \in L$.

Theorem 1.5. If $\lambda : \alpha \rightarrow [0, 1]$ is a fuzzy vector plane on α, then there exists a vector line L of α and real numbers $a_0 \geq a_1 \geq a_2 \in [0, 1]$ such that λ is of the following form:

$$
\begin{align*}
\lambda : & \quad \alpha \rightarrow [0, 1] \\
\bar{0} & \rightarrow a_0 \\
\bar{u} & \rightarrow a_1 \text{ for } \bar{u} \in L \setminus \{\bar{0}\} \\
\bar{u} & \rightarrow a_2 \text{ for } \bar{u} \in \alpha \setminus L,
\end{align*}
$$

Definition 1.6. Suppose V is an n–dimensional vector space. A flag in V is a sequence of distinct, non-trivial subspaces (U_0, U_1, \ldots, U_m) such that $U_j \subset U_i$ for all $j < i < n - 1$. The rank of a flag is the number of subspaces it contains. A maximal flag in V is a flag of length n.

2. Fuzzy Vector Planes of Fuzzy 4-Dimensional Vector Spaces

In this work, now we classify fuzzy 2-dimensional subspaces of fuzzy 4-dimensional vector spaces to classify fuzzy projective lines of fuzzy 3-dimensional projective space. Since a subspace should not necessarily have the same values (membership degrees different from a_0) in its points as the whole space [3], this classification is given in the following theorem.

Theorem 2.1. Let V be a 4-dimensional vector space over some field K and $\lambda : V \rightarrow [0, 1]$ be a fuzzy vector space on V. Then the fuzzy 4-dimensional vector space λ has exactly six kinds of fuzzy vector planes.

Proof. Let $\lambda : V \rightarrow [0, 1]$ is a fuzzy vector space on V and (U_0, U_1, U_2, U_3, V) is a maximal flag, then there exists a vector plane α of V and a base line L of α and real numbers $a_0 \geq a \geq b \geq c \geq d \in [0, 1]$ such that
ON THE CLASSIFICATION OF FUZZY PROJECTIVE LINES

\[\lambda : \ V \rightarrow [0, 1] \]
\[\overline{a} \rightarrow a_0 \]
\[\overline{a} \rightarrow a \text{ for } \overline{u} \in U_1 \setminus \{U_0\} \]
\[\overline{a} \rightarrow b \text{ for } \overline{u} \in U_2 \setminus U_1 \]
\[\overline{a} \rightarrow c \text{ for } \overline{u} \in U_3 \setminus U_2 \]
\[\overline{a} \rightarrow d \text{ for } \overline{u} \in V \setminus U_3. \]

The number of points different from zero on a vector line is denoted by \(p, \ q \) counts the number of vector lines \(L_j \) passing through zero point different from base line in \(U_2, \ r \) counts the number of vector lines \(L_k \) passing through zero point different from base line in \(U_3 \setminus L_j \) and \(s \) counts the number of vector lines \(L_t \) in \(V \setminus U_3 \). These fuzzy vector planes of \(\lambda \) are of one of the following forms:

1) Let \(\alpha_j \) be 2-dimensional vector spaces,

\[\lambda_{ij} : \ \alpha_j \rightarrow [0, 1] \]
\[\overline{a} \rightarrow a_0 \]
\[\overline{a} \rightarrow a_i \text{ for } \overline{u} \in L \setminus \{\overline{a}\} \]
\[\overline{a} \rightarrow b_{ij} \text{ for } \overline{u} \in \alpha_j \setminus L \]

such that \(a_i \geq b_{ij}, \ i \in \{1, \ldots, p\}, \ j \in \{1, \ldots, q\}. \)

2) Let \(\beta_k \) be 2-dimensional vector spaces, which

\[\mu_{ik} : \ \beta_k \rightarrow [0, 1] \]
\[\overline{a} \rightarrow a_0 \]
\[\overline{a} \rightarrow a_i \text{ for } \overline{u} \in L \setminus \{\overline{a}\} \]
\[\overline{a} \rightarrow c_{ik} \text{ for } \overline{u} \in \beta_k \setminus L \]

such that \(a_i \geq c_{ik}, \ i \in \{1, \ldots, p\}, \ k \in \{1, \ldots, r\}. \)

3) Let \(\gamma_t \) be 2-dimensional vector spaces,

\[\delta_{it} : \ \gamma_t \rightarrow [0, 1] \]
\[\overline{a} \rightarrow a_0 \]
\[\overline{a} \rightarrow a_i \text{ for } \overline{u} \in L \setminus \{\overline{a}\} \]
\[\overline{a} \rightarrow d_{it} \text{ for } \overline{u} \in \gamma_t \setminus L \]

such that \(a_i \geq d_{it}, \ i \in \{1, \ldots, p\}, \ t \in \{1, \ldots, s\}. \)

4) Let \(\alpha_{jk} \) be 2-dimensional vector spaces,

\[\psi_{ijk} : \ \alpha_{jk} \rightarrow [0, 1] \]
\[\overline{a} \rightarrow a_0 \]
\[\overline{a} \rightarrow b_{ij} \text{ for } \overline{u} \in L_j \setminus \{\overline{a}\} \]
\[\overline{a} \rightarrow c_{ik} \text{ for } \overline{u} \in \alpha_{jk} \setminus L_j \]

such that \(b_{ij} \geq c_{ik}, \ i \in \{1, \ldots, p\}, \ j \in \{1, \ldots, q\}, \ k \in \{1, \ldots, r\}. \)

5) Let \(\beta_{jt} \) be 2-dimensional vector spaces,
\(\varphi_{ijt} : \beta_{jt} \rightarrow [0, 1] \)
\[\begin{align*}
\bar{a} & \rightarrow a_0 \\
\bar{u} & \rightarrow b_{ij} \text{ for } \bar{u} \in L_j \setminus \{\bar{a}\} \\
\bar{u} & \rightarrow d_{jt} \text{ for } \bar{u} \in \beta_{jt} \setminus L_j
\end{align*} \]

such that \(b_{ij} \geq d_{jt}, i \in \{1, \ldots, p\}, j \in \{1, \ldots, q\}, t \in \{1, \ldots, s\} \).

6) Let \(\gamma_{kt} \) be 2-dimensional vector spaces,
\[\eta_{ikt} : \gamma_{kt} \rightarrow [0, 1] \]
\[\begin{align*}
\bar{a} & \rightarrow a_0 \\
\bar{u} & \rightarrow c_{ik} \text{ for } \bar{u} \in L_j \setminus \{\bar{a}\} \\
\bar{u} & \rightarrow d_{it} \text{ for } \bar{u} \in \gamma_{kt} \setminus L_j
\end{align*} \]

such that \(c_{ik} \geq d_{it}, i \in \{1, \ldots, p\}, k \in \{1, \ldots, r\}, t \in \{1, \ldots, s\} \). Any fuzzy vector plane is in the one of the six classes \(\square \).

Now, we give an example of two subclasses of fuzzy vector planes from \(\lambda_{ij} \) and \(\eta_{ikt} \).

Example 2.2. For \(j = 2, k = 2 \) and \(t = 3 \), fuzzy subspaces \(\lambda_{i2} \) and \(\eta_{i23} \) are given as follows:

\[\lambda_{i2} : \alpha_2 \rightarrow [0, 1] \]
\[\begin{align*}
\bar{a} & \rightarrow a_0 \\
\bar{u} & \rightarrow a_i \text{ for } \bar{u} \in L \setminus \{0\} \\
\bar{u} & \rightarrow b_{i2} \text{ for } \bar{u} \in \alpha_j \setminus L
\end{align*} \]

such that \(a_i \geq b_{i2} \geq i \in \{1, \ldots, p\} \) and

\[\eta_{i23} : \gamma_{23} \rightarrow [0, 1] \]
\[\begin{align*}
\bar{a} & \rightarrow a_0 \\
\bar{u} & \rightarrow c_{i2} \text{ for all } \bar{u} \in \beta_2 \setminus \{0\} \\
\bar{u} & \rightarrow d_{i3} \text{ for all } \bar{u} \in \gamma_{23} \setminus \{0\}
\end{align*} \]

such that \(c_{i2} \geq d_{i3}, i \in \{1, \ldots, p\} \)

3. **Fuzzy Projective Lines of Fuzzy 3-Dimensional Projective Space**

A general definition of fuzzy \(n \)-dimensional projective space \(\lambda' \) is well-known [3]. Here, we restrict ourselves to the case a fuzzy 3-dimensional projective space \(\lambda' \) from a fuzzy 4-dimensional vector space \((\lambda, V) \), having following form:

\[\lambda : V \rightarrow [0, 1] \]
\[\begin{align*}
\bar{a} & \rightarrow a_0 \\
\bar{u} & \rightarrow a \text{ for } \bar{u} \in U_1 \setminus \{U_0\} \\
\bar{u} & \rightarrow b \text{ for } \bar{u} \in U_2 \setminus U_1 \\
\bar{u} & \rightarrow c \text{ for } \bar{u} \in U_3 \setminus U_2 \\
\bar{u} & \rightarrow d \text{ for } \bar{u} \in V \setminus U_3
\end{align*} \]
with U_i an i-dimensional subspace of V, containing all U_j for $j < i$, and $a_0 \geq a \geq b \geq c \geq d$ are reals in $[0, 1]$. We define a fuzzy 3-dimensional projective space λ' on V' as follows, where it will be denoted $FPG(3, K)$.

\[
\lambda' : V' \to [0, 1] \\
q \to a \\
p \to b \text{ for } p \in U'_1 \setminus \{q\} \\
p \to c \text{ for } p \in U'_2 \setminus U'_1 \\
p \to d \text{ for } p \in V' \setminus U'_2
\] (2)

with q the fuzzy projective point corresponding to the fuzzy vector line U_1 in (2) and U'_i the i-dimensional projective space, corresponding to the vector space U_{i+1}. Then, the sequence (q, U'_1, U'_2, V') is a maximal flag and $a \geq b \geq c \geq d$ are reals in $[0, 1]$.

The following theorem deals with the classification of fuzzy projective lines of fuzzy 3-dimensional projective space from fuzzy 4-dimensional vector space.

Theorem 3.1. Fuzzy 3-dimensional projective space λ' from fuzzy 4-dimensional vector space λ over some field K has exactly six kinds of fuzzy projective lines.

Proof. Let λ' be fuzzy 3-dimensional projective space on V'. Then it is form as follows

\[
\lambda' : V' \to [0, 1] \\
q \to a \\
p \to b \text{ for } p \in U'_1 \setminus \{q\} \\
p \to c \text{ for } p \in U'_2 \setminus U'_1 \\
p \to d \text{ for } p \in V' \setminus U'_2.
\]

The fuzzy projective lines of λ' are one of the following forms:

1) Let L_j be projective lines corresponding to the vector planes α_j, and q be the projective point corresponding to the vector line $L \subseteq \alpha$.

\[
\lambda_{ij} : L_j \to [0, 1] \\
q \to a_i \\
p \to b_{ij}, \text{ for } p \in L_j \setminus \{q\}
\]
such that $a_i \geq b_{ij}$.

2) Let M_k be projective lines corresponding to the vector planes β_k, and q be a projective point corresponding to the vector line $L \subseteq \beta_k$.

\[
\mu_{ik} : M_k \to [0, 1] \\
q \to a_i \\
p \to c_{ik} \text{ for } p \in M_k \setminus \{q\}
\]
such that $a_i \geq c_{ik}$.
3) Let N_t be projective lines corresponding to the vector planes γ_t, and q be a projective point corresponding to the vector line $L \subseteq \gamma_t$.

\[
\eta_t' : \ N_t \to [0, 1] \\
q \to a_i \\
p \to d_{it} \text{ for } p \in N_t \{q\}.
\]

such that $a_i \geq d_{it}$.

4) Let L_{jk} be projective lines corresponding to the vector planes α_{jk}.

\[
\psi_{ijk}' : \ L_{jk} \to [0, 1] \\
q_j \to b_{ij}, \text{ for } q_j \in L \\
p \to c_{ik}, \text{ for } p \in L_{jk} \{q_j\}.
\]

such that $b_{ij} \geq c_{ik}$.

5) Let M_{jt} be projective lines corresponding to the vector planes β_{jt}.

\[
\varphi_{ijt}' : \ M_{jt} \to [0, 1] \\
q_j \to b_{ij}, \text{ for } q_j \in L \\
p \to d_{it}, \text{ for } p \in M_{jt} \{q_j\}.
\]

such that $b_{ij} \geq d_{it}$.

6) Let N_{kt} be projective lines corresponding to the vector planes γ_{kt}.

\[
\eta_{ikt}' : \ N_{kt} \to [0, 1] \\
p \to c_{ik}, \text{ for } p \in L_j \\
p \to d_{it}, \text{ for } p \in N_{kt} \{L_j\}.
\]

such that $c_{ik} \geq d_{it}$.

One can easily see that any fuzzy projective line is in one of above the six classes.

Example 3.2. If we consider the subclasses λ_{i2} and η_{i23} in the example 2.1, then the subclasses of fuzzy projective lines λ_{i2}' and η_{i23}' from fuzzy vector planes λ_{i2} and η_{i23} are as follows:

\[
\lambda_{i2}' : \ L_2 \to [0, 1] \\
q \to a_i \\
p \to b_{i2} \text{ for } p \in L_2 \{q\}
\]

and

\[
\eta_{i23}' : \ N_{23} \to [0, 1] \\
p \to c_{i2} \text{ for all } p \in L_2 \\
p \to d_{i3} \text{ for all } p \in N_{23} \{L_2\}
\]

ÖZET Bu çalışmada, fuzzy 4—boyutlu vektör uzayının fuzzy vektör düzlemlerinin sınıflaması ve fuzzy 4—boyutlu vektör uzayından elde edilen fuzzy 3—boyutlu projektif uzayın fuzzy projektif doğrularının sınıflaması veriliyor.
REFERENCES

Current address: Eskişehir Osmangazi University, Department of Mathematics, 26480 Eskişehir, Turkey.
INSTRUCTIONS TO CONTRIBUTORS

Mathematics and Statistics of COMMUNICATIONS accepts original research articles written in English in the fields of Mathematics and Statistics. Review articles written by eminent scientists can also be invited by the Editor.

Three copies of the manuscripts must be submitted in AMS Article Tex format.

Formulas should be numbered consecutively in parentheses () and each manuscript should be accompanied by classification numbers from the American Mathematical Society's classification scheme.

It is a fundamental condition that articles submitted to Communications have not been previously published and will not be simultaneously submitted or published elsewhere. After the manuscript has been accepted for publication, i.e., after referee-recommended revisions are complete, the author will not be permitted to make any new additions to the manuscript.

Before publication the galley proof is always sent to the author for correction. Thus it is solely the author's responsibility for any typographical mistakes which occur in their article as it appears in the Journal.

1. Title Page:
The title should not be long but should be informative. Each title page must contain (i) The title of the paper in English, (ii) The complete name(s) of the author(s), (iii) The name and the address of the University.

2. Abstract:
The abstract should not exceed 200 words and it should condense the essential features of the articles with the focus on the major advances in the field.

3. References:
References must be listed in alphabetical order at the end of the article and then numbered in brackets [1]. Within the manuscript, refer to the references by their given number, again in brackets [1]. They should be styled and punctuated according to the following examples:

Abstracts, unpublished data and personal communications should not be given in the references but they may be mentioned in the text.

4. Footnotes:
Footnotes, except a possible acknowledgement of assistance or financial support on the first page, should be avoided by being incorporated into the text.
5. Tables and Figures:
All tables and figures must be numbered consecutively throughout the paper (Table 1, Figure 2) and also have a caption or legend.

6. Acknowledgements:
Acknowledgements should be given as short as possible at the end of the text.

7. Reprints:
25 free reprints will be provided for each paper. Irrespective of their acceptance, manuscripts will not be returned to the authors.

8. Computer Disk:
After the acceptance of manuscripts for publication, we will ask you to submit a revised electronic copy of the manuscript which is written in AMS tex format. For electronic submission please visit our WEB page at
http://math.science.ankara.edu.tr/dergi/dergi.htm

9. Charges:
Each paper is due to be charged for the amount of which is determined by the administration each year.

10. Address:
Text should be sent to the following address:
Prof.Dr. Öner ÇAKAR- Editor-in-Chief, Communications
Ankara University, Faculty of Sciences
06100. Tandoğan, ANKARA - TURKEY