A NOTE ON SEIBERG-WITTEN MONOPOLE EQUATIONS ON \mathbb{R}^8

N. ÖZDEMİR AND N. DEĞIRMENCİ

Department of Mathematics, Faculty of Science, Anadolu University, Eskişehir, TURKEY

(Received Sep. 03, 2004; Accepted Nov. 26, 2004)

ABSTRACT

Salamon's generalizations of the Seiberg-Witten equations are meaningful on any even-dimensional manifolds. In this work we show that there are no nontrivial solutions of these equations for any spinc-structures on \mathbb{R}^8.

1. INTRODUCTION

The Seiberg-Witten monopole equations are stated for 4-dimensional manifolds and these equations have great importance for the topology of smooth four-manifolds (see [7], [5]). There are also some analogous to these equations in 8-dimension (see [2], [7], [3]). In [1] it is shown that the one given by Salamon [7] have no nontrivial solutions for the standard spinc-structures on \mathbb{R}^8. In this work we show that Salamon's generalization of the Seiberg-Witten equations have no nontrivial solutions for any spinc-structures on \mathbb{R}^8.

2. PRELIMINARIES

In this section we give some basic definitions and facts about Seiberg-Witten monopole equations. For more details one can look in [7].

Definition 2.1. A spinc-structure on a $2n$-dimensional oriented real Hilbert space V is a pair (\mathcal{W}, Γ) where \mathcal{W} is a 2^n-dimensional complex Hermitian vector space and $\Gamma : V \to \text{End}(\mathcal{W})$ is a linear map which satisfies

$$\Gamma(\nu)^* + \Gamma(\nu) = 0, \quad \Gamma(\nu)^* \Gamma(\nu) = \|\nu\|^2$$

for every $\nu \in V$.

It is pointed out in [7] that such a map can be extended to an algebra isomorphism $\text{Cl}(V) \to \text{End}(\mathcal{W})$ which satisfies $\Gamma(\bar{x}) = \Gamma(x)^*$, where
\(\text{Cl}(V) \cong \text{Cl}(V) \otimes \mathbb{C} \) is complex Clifford algebra over \(V \), \(\overline{x} \) is conjugate of \(x \) in \(\text{Cl}(V) \) and \(\Gamma(x)\star \) denotes hermitian-conjugate of \(\Gamma(x) \).

Let \((W_1, \Gamma_1) \) and \((W_2, \Gamma_2) \) be two spin\(^c\)-structures on \(V \). If there exists a unitary isomorphism \(U : W_1 \to W_2 \) such that

\[
U \Gamma_1(v) U^* = \Gamma_2(v)
\]

for all \(v \in V \), then the spin\(^c\)-structures \((W_1, \Gamma_1) \) and \((W_2, \Gamma_2) \) are said to be equivalent. It is known that such a unitary isomorphism always exists as a result of the following proposition (see [7]).

Proposition 2.2. Let \((W_1, \Gamma_1) \) and \((W_2, \Gamma_2) \) be two spin\(^c\)-structures on \(V \). Then there exists a unitary isomorphism \(U : W_1 \to W_2 \) such that

\[
U \Gamma_1(v) U^* = \Gamma_2(v)
\]

for all \(v \in V \).

Let \((W, \Gamma) \) be a spin\(^c\)-structure on \(V \). There is a natural splitting of \(W \).

Fix an orientation of \(V \) and denote by

\[
\epsilon = e_{2n} \cdots e_1 \in \text{Cl}(V)
\]

the unique element of \(\text{Cl}(V) \) which has degree \(2n \) and is generated by a positively oriented orthonormal basis \(e_1, \cdots, e_{2n} \). Then \(\epsilon^2 = (-1)^n \) and hence

\[
W = W^+ \oplus W^-
\]

where the \(W^\pm \) are the eigen spaces of \(\Gamma(\epsilon) \)

\[
W^\pm = \{ w \in W : \Gamma(\epsilon)w = \pm i^n w \}.
\]

Note that \(\Gamma(v)W^+ \subset W^- \) and \(\Gamma(v)W^- \subset W^+ \) for every \(v \in V \). So the restriction of \(\Gamma(v) \) to \(W^+ \) for \(v \in V \) determines a linear map \(\gamma : V \to \text{Hom}(W^-, W^+) \) which satisfies

\[
\gamma(v)^* \gamma(v) = |v|^2 1
\]

for every \(v \in V \).

Let \((W, \Gamma) \) be a spin\(^c\)-structure on \(V \). Such a structure gives an action of the space of 2-forms \(\Lambda^2 V \) on \(W \). This action is defined by the following:
Firstly, identify $\Lambda^2 V$ with the space of second order elements of Clifford algebra $C_2(V)$ via the map

$$\Lambda^2 V \rightarrow C_2(V), \eta = \sum_{i<j} \eta_{ij}e_i \wedge e_j \mapsto \sum_{i<j} \eta_{ij}e_i e_j.$$

Compose this map with Γ to obtain a map $\rho: \Lambda^2 V \rightarrow \text{End}(W)$ given by

$$\rho\left(\sum_{i<j} \eta_{ij}e_i \wedge e_j\right) = \sum_{i<j} \eta_{ij} \Gamma(e_i) \Gamma(e_j)$$

for any orthonormal basis e_1, \cdots, e_{2n} of V. This map is independent of the choice of the orthonormal basis e_1, \cdots, e_{2n}. The spaces W^\pm are invariant under $\rho(\eta)$ for every 2-form $\eta \in \Lambda^2 V$. So we can define

$$\rho^\pm(\eta) = \rho(\eta)|_{W^\pm}$$

for $\eta \in \Lambda^2 V$. In 4-dimensions $\rho^+(\eta) = \rho^+(\eta^+)$ for every 2-form $\eta \in \Lambda^2 V$, where η^+ is the self-dual part of η. The map ρ extends to a map

$$\rho: \Lambda^2 V \otimes \mathbb{C} \rightarrow \text{End}(W)$$

on the space of complex valued 2-forms. If η is a real valued 2-form, then $\rho(\eta)$ is skew-Hermitian and if η is imaginary valued then $\rho(\eta)$ is Hermitian.

Globalizing above Γ to 2n-dimensional oriented manifold X defines a spinc structure $\Gamma: TX \rightarrow \text{End}(W)$, W being a 2n-dimensional complex Hermitian vector bundle on X. Such a structure exists if $w_2(X)$ has an integral lift (see [4]). Γ extends to an isomorphism between the complex Clifford algebra bundle $\mathcal{C}l(TX)$ and $\text{End}(W)$. There is a natural splitting $W = W^+ \oplus W^-$ into the $\pm i^n$ eigenspaces of $\Gamma(e_{2n} e_{2n-1} \cdots e_1)$ where $e_1, e_2, \cdots e_{2n}$ is any positively oriented local orthonormal frame of TX.

A Hermitian connection ∇ on W is called a spinc connection (compatible with the Levi-Civita connection) if

$$\nabla_\psi (\Gamma(w) \Psi) = \Gamma(w) \nabla_\psi \Psi + \Gamma(\nabla_\psi w) \Psi$$

where Ψ is a spinor (section of W), ψ and w are vector fields on X and $\nabla_\psi w$ is the Levi-Civita connection on X. ∇ preserves the subbundles W^\pm.
There is a principal Spin^c(2n)-bundle \(P \) on \(X \) such that the bundle \(W \) of spinors, the tangent bundle \(TX \), and the line bundle \(L_\Gamma \) can be recovered as the associated bundles

\[
W = P \times_{\text{Spin}^c(2n)} \mathbb{C}^{2n}, \quad TX = P \times_{Ad} \mathbb{R}^{2n}
\]

where \(Ad \) is the adjoint action of

\[
\text{Spin}^c(2n) = \{ e^{i\theta} x : \theta \in \mathbb{R}, x \in \text{Spin}(2n) \} \subset \mathbb{C}l_{2n}
\]

on \(R^{2n} \). Then one can obtain a complex line bundle \(L_\Gamma = P \times_\delta \mathbb{C} \) where

\[
\delta : \text{Spin}^c(2n) \rightarrow S^1 \text{ by } \delta(e^{i\theta} x) = e^{2i\theta}.
\]

There is a one-to-one correspondence between spin^c connections on \(W \) and \(\text{spin}^c(2n) = \text{Lie}(\text{Spin}^c(2n)) = \text{spin}(2n) \oplus i\mathbb{R} \)-valued connection 1-forms \(\tilde{A} \in A(P) \subset \Omega^1(P, \text{spin}^c(2n)) \) on \(P \). Hence every spin^c connection \(\tilde{A} \) decomposes as

\[
\tilde{A} = \tilde{A}_0 + \frac{1}{2^n} \text{trace}(\tilde{A})
\]

where \(\tilde{A}_0 \) is the traceless part of \(\tilde{A} \). Let \(A = \frac{1}{2^n} \text{trace}(\tilde{A}) \). This is an imaginary valued 1-form in \(\Omega^1(P, i\mathbb{R}) \) which satisfies

\[
A_{pq}(vg) = A_p(v), \quad A_p(p, \xi) = \frac{1}{2^n} \text{trace}(\xi)
\]

(1)

for \(v \in T_p P \), \(g \in \text{Spin}^c(2n) \), and \(\xi \in \text{spin}^c(2n) \). Let

\[
\mathbf{A}(\Gamma) = \{ A \in \Omega^1(P, i\mathbb{R}) : A \text{ satisfies (1)} \}
\]

There is a one-to-one correspondence between these 1-forms and spin^c connections on \(W \). Let \(\nabla_A \) be the spin^c connection corresponding to \(A \). \(\mathbf{A}(\Gamma) \) is an affine space with parallel vector space \(\Omega^1(X, i\mathbb{R}) \). Let \(F_A \in \Omega^2(P, i\mathbb{R}) \) be the curvature of the 1-form \(A \) and \(D_A \) denote the Dirac operator corresponding to \(A \in \mathbf{A}(\Gamma) \),

\[
D_A : C^\infty(X, W^+) \rightarrow C^\infty(X, W^-)
\]

defined by
where $\Psi \in C^\infty(X, W^+)$ and e_1, e_2, \ldots, e_{2n} is any local orthonormal frame.

The Seiberg-Witten equations can now be expressed as follows:

Let $\Gamma : TX \to \text{End}(W)$ be a fixed spinc structure on X and consider the pair $(A, \Psi) \in \Lambda(\Gamma) \times C^\infty(X, W^+)$. The Seiberg-Witten equations read

$$D_A \Psi = 0, \quad \rho^+(F_A) = \left(\Psi \Psi^*\right)_0$$

where $(\Psi \Psi^*)_0 \in C^\infty(X, \text{End}(W^+))$ is defined by $(\Psi \Psi^*)(x) = \langle \Psi(x), \tau \rangle \Psi^*(x)$ for $\tau \in C^\infty(X, W^+)$ and $(\Psi \Psi^*)_0$ is the traceless part of $(\Psi \Psi^*)$.

3. MONOPOLE EQUATIONS ON \mathbb{R}^8 WITH DIFFERENT Spinc-STRUCTURES AND THEIR RELATIONS

One can find the explicit expressions of the Seiberg-Witten monopole equations on \mathbb{R}^4 in [6] and [7].

In our case $X = \mathbb{R}^8$, $W_1 = W_2 = C^{16}$ and $L_T = \mathbb{R}^8 \times C$, (W_1, Γ_1) and (W_2, Γ_2) spinc-structures on \mathbb{R}^8 and we consider the unitary map U from W_1 to W_2 that satisfies

$$U \circ \Gamma_1(v) \circ U^* = \Gamma_2(v)$$

for all $v \in \mathbb{R}^8$.

In [1] they consider standard spinc-structure which is obtained from the well-known isomorphism of the complex Clifford algebra Cl_{2n} with $\text{End}(\Lambda^* C^n)$ and they express following theorem:

Theorem 3.1. There are no nontrivial solutions of the Seiberg-Witten equations on \mathbb{R}^8 with constant standard spinc-structure, i.e. $\rho^+(F_A) = \left(\Psi \Psi^*\right)_0$ (alone) implies $F_A = 0$ and $\Psi = 0$.
Our goal is to state a similar theorem for any spinc-structure on \mathbb{R}^8. To do this we need some lemmas.

Lemma 3.2. If a unitary isomorphism U from W_1 to W_2 satisfies (2), then U maps W_1^\pm onto W_2^\pm.

Proof. Let $\Psi \in C^\infty(\mathbb{R}^8, W_1^+)$. Then $\Gamma_1(\varepsilon)\Psi = \Psi$ where

$$\varepsilon = e_2 \cdots e_n e_1.$$ $\Psi = \Gamma_1(e_2 \cdots e_1)\Psi = \Gamma_1(e_2)\cdots \Gamma_1(e_1)\Psi = U^*\Gamma_2(e_2)\cdots U^*\Gamma_2(e_1)U\Psi = U^*\Gamma_2(e_2 \cdots e_1)U\Psi.$$

From the last equality $\Gamma_2(e_2 \cdots e_1)U\Psi = U\Psi$ that is, $U\Psi \in C^\infty(\mathbb{R}^8, W_2^+)$. Thus U maps W_1^+ onto W_2^+. It can be shown in a similar way that U maps W_1^- onto W_2^-.

Lemma 3.3. The maps $\rho_1 : \Lambda^2(T^*\mathbb{R}^8) \otimes \mathbb{C} \to End(W_1)$ and $\rho_2 : \Lambda^2(T^*\mathbb{R}^8) \otimes \mathbb{C} \to End(W_2)$ satisfy $\rho_1(\eta) = U^*\rho_2(\eta)U^*$ for any 2-form $\eta = \sum \eta_{ij}e_i \wedge e_j$ in $\Lambda^2(T^*\mathbb{R}^8) \otimes \mathbb{C}$.

Proof.

$$\rho_2(\eta) = \sum_{i<j} \eta_{ij} \Gamma_2(e_i)\Gamma_2(e_j) = \sum_{i<j} \eta_{ij}U\Gamma_2(e_i)U^* \Gamma_2(e_j)U^* (\text{Since } UU^* = I) = \sum_{i<j} U\eta_{ij} \Gamma_2(e_i)\Gamma_2(e_j)U^* = U\left(\sum_{i<j} \eta_{ij} \Gamma_2(e_i)\Gamma_2(e_j)\right)U^* = U(\rho_1(\eta))U^*.$$

Note that $\rho_2^*(\eta) = U(\rho_1^*(\eta))U^*$.
Lemma 3.4. If $\Psi \in C^\infty(\mathbb{R}^8, W_1^*)$, then the equality
\[
((U\Psi)(U\Psi)^*)_0 = U(\Psi\Psi^*)_0 U^*
\]
holds for any unitary isomorphism $U : C^{16} \to C^{16}$.

Proof.
\[
(U(\Psi\Psi^*)_0 U^*)_\tau = (U(\Psi\Psi^*)_0 U^*) \tau
= U(\Psi, U^* \tau) \Psi - \text{trace}(\Psi\Psi^*) U^* \tau
= \langle \Psi, U^* \tau \rangle U \Psi - \text{trace}(\Psi\Psi^*) \tau
= \langle \Psi, U^* \tau \rangle U \Psi - \text{trace}(U \Psi (U \Psi)^*)
= (U \Psi (U \Psi)^*)_0 \tau
\]
for all $\tau \in C^\infty(\mathbb{R}^8, W_1^*)$. Note that,
\[
\text{trace}(\Psi\Psi^*) = \|\Psi\|^2 = \|U\Psi\|^2 = \text{trace}(U \Psi (U \Psi)^*),
\]
since U is unitary.

Lemma 3.5. Let (Γ_1, W_1) and (Γ_2, W_2) be two spinc-structures on \mathbb{R}^8 and $U : W_1 \to W_2$ be a unitary isomorphism such that $U \circ \Gamma_1(\nu) \circ U^* = \Gamma_2(\nu)$ for all $\nu \in \mathbb{R}^8$. If the pair (A, Ψ) is a solution of the monopole equations with respect to Γ_1, then the pair $(A, U \Psi)$ is a solution of the monopole equations with respect to Γ_2.

Proof. Let (A, Ψ) be a solution of the equations
\[
D_A \Psi = \sum_{i=1}^8 \Gamma_1(e_i) \nabla_i(\Psi) = 0,
\]
\[
\rho_1^+(F_A) = \sum_{i<j} F_{ij} \Gamma_1(e_i) \Gamma_1(e_j) = (\Psi\Psi^*)_0
\]
Then
\[D_A(\Psi') = \sum_{i=1}^{8} \Gamma_2(e_i)\nabla_i(\Psi') \]
\[= \sum_{i=1}^{8} U\Gamma_1(e_i)U^*\nabla_i(\Psi') \]
\[= \sum_{i=1}^{8} U\Gamma_1(e_i)U^*U\nabla_i(\Psi') \] (since \(\nabla_i(\Psi') = U\nabla_i(\Psi') \))
\[= U\sum_{i=1}^{8} \Gamma_1(e_i)\nabla_i(\Psi') = U(D_A\Psi) = 0. \]

The equality \(\nabla_i(\Psi') = U\nabla_i(\Psi') \) holds for all \(\Psi' \in C^\infty(\mathbb{R}^8, W^+_1) \),

\[U\Psi = \left(\sum_{i=1}^{16} u_{1i}\Psi_i, \cdots, \sum_{i=1}^{16} u_{(16)i}\Psi_i \right) \] where \(U = (u_{ij}) \) is the matrix notation of the unitary map \(U \).
\[\nabla_i (U \Psi) = \nabla_i \begin{bmatrix}
 u_{11} \psi_1 + \cdots + u_{1(16)} \psi_{(16)} \\
 u_{21} \psi_1 + \cdots + u_{2(16)} \psi_{(16)} \\
 \vdots \\
 u_{(16)i} \psi_1 + \cdots + u_{(16)(16)} \psi_{(16)}
\end{bmatrix} \\
= \begin{bmatrix}
 \frac{\partial}{\partial x_i} \left(u_{11} \psi_1 + \cdots + u_{1(16)} \psi_{(16)} \right) + \mathcal{A}_i \left(u_{11} \psi_1 + \cdots + u_{1(16)} \psi_{(16)} \right) \\
 \frac{\partial}{\partial x_i} \left(u_{21} \psi_1 + \cdots + u_{2(16)} \psi_{(16)} \right) + \mathcal{A}_i \left(u_{21} \psi_1 + \cdots + u_{2(16)} \psi_{(16)} \right) \\
 \vdots \\
 \frac{\partial}{\partial x_i} \left(u_{(16)i} \psi_1 + \cdots + u_{(16)(16)} \psi_{(16)} \right) + \mathcal{A}_i \left(u_{(16)i} \psi_1 + \cdots + u_{(16)(16)} \psi_{(16)} \right)
\end{bmatrix} \\
= \begin{bmatrix}
 u_{11} \frac{\partial \psi_1}{\partial x_i} + \cdots + u_{1(16)} \frac{\partial \psi_{(16)}}{\partial x_i} + u_{11} \mathcal{A}_i \psi_1 + \cdots + u_{1(16)} \mathcal{A}_i \psi_{(16)} \\
 u_{21} \frac{\partial \psi_1}{\partial x_i} + \cdots + u_{2(16)} \frac{\partial \psi_{(16)}}{\partial x_i} + u_{21} \mathcal{A}_i \psi_1 + \cdots + u_{2(16)} \mathcal{A}_i \psi_{(16)} \\
 \vdots \\
 u_{(16)i} \frac{\partial \psi_1}{\partial x_i} + \cdots + u_{(16)(16)} \frac{\partial \psi_{(16)}}{\partial x_i} + u_{(16)i} \mathcal{A}_i \psi_1 + \cdots + u_{(16)(16)} \mathcal{A}_i \psi_{(16)}
\end{bmatrix} \\
= \begin{bmatrix}
 u_{11} & u_{12} & \cdots & u_{1(16)} \\
 u_{21} & u_{22} & \cdots & u_{2(16)} \\
 \vdots & \vdots & \ddots & \vdots \\
 u_{(16)i} & u_{(16)2} & \cdots & u_{(16)(16)}
\end{bmatrix} \begin{bmatrix}
 \frac{\partial \psi_1}{\partial x_i} + \mathcal{A}_i \psi_1 \\
 \frac{\partial \psi_2}{\partial x_i} + \mathcal{A}_i \psi_2 \\
 \vdots \\
 \frac{\partial \psi_{(16)}}{\partial x_i} + \mathcal{A}_i \psi_{(16)}
\end{bmatrix}
\]

For the second equation:
\[\rho_2^+ (F_A) = U \left(\rho_1^+ (\eta) U^* \right) \text{ (from Lemma)} \]
\[= U \left(\Psi \Psi^* \right)_0 U^* \text{ (since } \Psi \text{ is a solution)} \]
\[= \left((U \Psi)(U \Psi)^* \right)_0 \text{ (from Lemma)} \]

To summarise, we can express the following theorem:
Theorem 3.6. Let \((\Gamma, W) \) be any spin\(^c\)-structure on \(\mathbb{R}^8 \). Then there are no nontrivial solutions of the Seiberg-Witten equations on \(\mathbb{R}^8 \) with arbitrary spin\(^c\)-structure, i.e. \(\rho^+ (F_A) = (\Psi \Psi^*)_0 \) implies \(F_A = 0 \) and \(\Psi = 0 \).

Proof. Let \((A, \Psi) \) be a solution to the Seiberg-Witten equations on \(\mathbb{R}^8 \) with respect to \((\Gamma, W) \). Since standard spin\(^c\)-structure is equivalent to the any spin\(^c\)-structure \((\Gamma, W) \), there exists a unitary isomorphism \(U \) which satisfies the equation (2). Then the pair \((A, U\Psi) \) is a solution for the Seiberg-Witten equations on \(\mathbb{R}^8 \) with respect to standard spin\(^c\)-structure and from Theorem 3.1., \(A = 0 \) and \(U\Psi = 0 \). Since \(U \) is a isomorphism we get \(\Psi = 0 \).

ÖZET
Salamon’un genelleştirdiği Seiberg-Witten denklemleri herhangi bir çift boyutta anlamılır. Bu çalışmada \(\mathbb{R}^8 \) üzerindeki herhangi bir spin\(^c\) yapısı için Salamon tarafından verilen Seiberg-Witten denklemlerinin nontrivial çözümünün olmadığı gösterilmiştir.

REFERENCES

