SOME NEW GENERALIZED SEQUENCE SPACES DEFINED BY ORLICZ FUNCTIONS

A. ESI

University of İnönü, Department of Mathematics, Science and Art Faculty in Adiyaman, 02200 Adıyaman - TURKEY

(Received: May 07, 2003 ; Accepted: June 26, 2003)

ABSTRACT

In this paper, we introduce some new generalized sequence spaces using Orlicz function. We also examine some properties of these sequence space.

1. INTRODUCTION

Let l_{∞}, ℓ and c_0 be the Banach spaces of bounded, convergent and null sequences $x=(x_k)$, respectively, normed, as usual, by $\|x\| = \sup k |x_k| < \infty$.

Lindenstrauss and Tzafriri [1] used the idea of Orlicz function to construct the sequence space

$$ l_M = \left\{ x : \sum_k M \left(\frac{|x_k|}{\rho} \right) < \infty, \text{ for some } \rho > 0 \right\}. $$

The space l_M with the norm

$$ \|x\| = \inf \left\{ \rho > 0 : \sum_k M \left(\frac{|x_k|}{\rho} \right) \leq 1 \right\} $$

becomes a Banach space which is called an Orlicz sequence space.
The space \(l_M \) is closely related to the space \(l_p \) which is an Orlicz sequence space with \(M(x) = x^p, 1 \leq p < \infty \).

In the present note we introduce and examine some properties of four sequence spaces defined by using Orlicz function \(M \), which generalize the well known Orlicz sequence space \(l_M \) and \(l_\infty (p, s) \), \(c(p, s) \) and \(c_0 (p, s) \).

An Orlicz function is a function \(M: [0, \infty[\to [0, \infty[\), which is continuous, non-decreasing and convex with \(M(0)=0, M(x) > 0 \) for \(x>0 \) and \(M(x) \to \infty \) as \(x \to \infty \).

2. MAIN RESULTS

Let \(p= (p_k) \) be a sequence of positive real numbers. We define the following sequence spaces

\[
l_M (p, s) = \left\{ x \in w : \sup_n \sum_k k^{-s} \left[M \left(\frac{|x_{k+n}|}{\rho} \right) \right]^{p_k} < \infty, \quad \text{for some } \rho > 0 \text{ and } s \geq 0 \right\},
\]

\[
l_\infty (M, p, s) = \left\{ x \in w : \sup_n \sum_k k^{-s} \left[M \left(\frac{|x_{k+n}|}{\rho} \right) \right]^{p_k} < \infty, \quad \text{for some } \rho > 0 \text{ and } s \geq 0 \right\},
\]

\[
c(M, p, s) = \left\{ x \in w : k^{-s} \left[M \left(\frac{|x_{k+n} - L|}{\rho} \right) \right]^{p_k} \to 0 \text{ as } k \to \infty, \quad \text{for some } \rho, L > 0, \text{ and } s \geq 0, \text{ uniformly in } n \right\},
\]

\[
c_0 (M, p, s) = \left\{ x \in w : k^{-s} \left[M \left(\frac{|x_{k+n}|}{\rho} \right) \right]^{p_k} \to 0 \text{ as } k \to \infty, \quad \text{for some } \rho > 0, \text{ and } s \geq 0, \text{ uniformly in } n \right\}.
\]

When \(p_k=1 \) for all \(k, n=0 \) and \(s=0 \), then \(l_M (p, s) \) becomes \(l_{M} \). When \(M(x)=x \) and \(s=0 \) then the family of sequences defined above become \(l_{(p)} \), \(l_{\infty (p)} \), \(c(p) \) and \(c_0 (p) \) respectively [2].
When $M(x) = x$ and $n = 0$, then $l_M(p, s)_n$ becomes $l_{(p, s)}$ which has been investigated by Bulut and Çakar [3] and $l_\infty(M, p, s), c(M, p, s)$ and $c_o(M, p, s)$ become $l_\infty(p, s), c(p, s)$ and $c_o(p, s)$ which has been investigated by Başarir [4].

In order to discuss the properties of $l_{M}(p, s)$, we assume that $p = (p_k)$ is bounded.

Theorem 1. Let $H = \sup_k p_k < \infty$ then $l_M(p, s)$ is a linear set over the set of complex numbers C.

Proof. Let $x, y \in l_M(p, s)$ and $\alpha, \beta \in C$. In order to prove the result we need to find some ρ_3 and $s \geq 0$ such that

$$\sup_n \sum_k k^{-s} \left[M \left(\frac{|\alpha x_{k+n} + \beta y_{k+n}|}{\rho_3} \right) \right]^{p_k} < \infty .$$

Since $x, y \in l_M(p, s)$, therefore there exists some positive ρ_1, ρ_2 and $s \geq 0$ such that

$$\sup_n \sum_k k^{-s} \left[M \left(\frac{|x_{k+n}|}{\rho_1} \right) \right]^{p_k} < \infty ,$$

and

$$\sup_n \sum_k k^{-s} \left[M \left(\frac{|y_{k+n}|}{\rho_2} \right) \right]^{p_k} < \infty .$$

Define $\rho = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since M is non-decreasing and convex

$$\sum_k k^{-s} \left[M \left(\frac{|\alpha x_{k+n} + \beta y_{k+n}|}{\rho_3} \right) \right]^{p_k} \leq \sum_k k^{-s} \left[M \left(\frac{|\alpha x_{k+n}|}{\rho_3} + \frac{|\beta y_{k+n}|}{\rho_3} \right) \right]^{p_k}$$

$$\leq \sum_k k^{-s} \frac{1}{2^{p_k}} \left[M \left(\frac{|x_{k+n}|}{\rho_1} + \frac{|y_{k+n}|}{\rho_2} \right) \right]^{p_k}.$$
\[
< \sum_{k} k^{-s} \left[M \left(\frac{|x_{k+n}|}{\rho_1} \right) + M \left(\frac{|y_{k+n}|}{\rho_2} \right) \right]^{p_k} \\
\leq C \sum_{k} k^{-s} \left[M \left(\frac{|x_{k+n}|}{\rho_1} \right) \right]^{p_k} + C \sum_{k} k^{-s} \left[M \left(\frac{|y_{k+n}|}{\rho_2} \right) \right]^{p_k}
\]
for all \(n \),

where \(C = \max (1, 2^{H-1}) \). This proves that \(l_M(p, s) \) is linear.

Theorem 2. \(l_M(p, s) \) is paranormed space with the paranorm

\[
G(x) = \inf \left\{ \rho^p_H : \left(\sum_k k^{-s} \left[M \left(\frac{|x_{k+n}|}{\rho} \right) \right]^{p_k} \right)^{1/H} \leq 1, n = 1, 2, \ldots, s \geq 0 \right\}
\]

where \(H = \max(1, \sup_k p_k) \).

Proof. Clearly \(G(x) = G(-x) \). The subadditivity of \(G \) follows from Theorem 1. Since \(M(0) = 0 \), we get \(\inf \left\{ \rho^p_H \right\} = 0 \) for \(x = 0 \). Conversely, suppose that \(G(x) = 0 \). Then it is easy to see that \(x = 0 \). Finally using the same technique of Theorem 2 of Parashar and Choudhary [5], it can be easily seen that scalar multiplication is continuous. This completes the proof.

Remark. It can easily be verified that when \(M(x) = x \) and \(n = 0 \), the paranorm defined \(l_M(p, s) \) and paranorm defined in \(l(p, s) \) are the same.

An Orlicz function \(M \) can always be represented by Krasnoselskii and Rutitsky [6] in the following integral form
\[M(x) = \int_0^x q(t) \, dt \]

where \(q \), known as the kernel of \(M \), is right-differentiable for \(t \geq 0 \), \(q(0) = 0 \), \(q(t) > 0 \) for \(t > 0 \), \(q \) is non-decreasing and \(q(t) \to \infty \) as \(t \to \infty \).

Theorem 3. Let \(1 \leq p_k < \infty \). Then \(\ell_M(p, s) \) is complete paranormed space with

\[
G(x) = \inf \left\{ \rho^p \gamma_H : \left(\sum_k k^{-s} \left[M\left(\frac{|x_k+n|}{\rho} \right) \right]^{p_k} \right)^{\gamma_H} \leq 1, \, n = 1, 2, ..., s \geq 0 \right\}.
\]

Proof. The proof follows on the same lines as adopted by Parashar and Choudhary [5, Theorem 3]. So we omit it.

Theorem 4

(i). Let \(0 < p_k \leq q_k < \infty \) for each \(k \). Then \(\ell_M(p, s) \subset \ell_M(q, s) \).

(ii). \(s_1 \leq s_2 \) implies \(\ell_M(p, s_1) \subset \ell_M(p, s_2) \).

Proof (i). Let \(x \in \ell_M(p, s) \). Then there exists some \(\rho > 0 \) and \(s \geq 0 \) such that

\[
\sup_n \sum_k k^{-s} \left[M\left(\frac{|x_k+n|}{\rho} \right) \right]^{p_k} < \infty.
\]

This implies that

\[
i^{-s} \left[M\left(\frac{|x+n|}{\rho} \right) \right] \leq 1 \quad \text{for sufficiently large values of } i \text{ and all } n.
\]

Since \(M \) is non-decreasing, we get
\[\sum_{k} k^{-s} \left[M \left(\frac{|x_{k+n}|}{\rho} \right) \right]^q \leq \sum_{k} k^{-s} \left[M \left(\frac{|x_{k+n}|}{\rho} \right) \right]^p < \infty. \]

Thus we get \(x \in L_M(q,s) \).

(ii). Let \(s_1 \leq s_2 \). Then \(k^{-s_2} \leq k^{-s_1} \) for all \(k \). Since

\[k^{-s_2} \left[M \left(\frac{|x_{k+n}|}{\rho} \right) \right]^p \leq k^{-s_1} \left[M \left(\frac{|x_{k+n}|}{\rho} \right) \right]^p \text{ for all } n, \]

and then

\[\sum_{k} k^{-s_2} \left[M \left(\frac{|x_{k+n}|}{\rho} \right) \right]^p \leq \sum_{k} k^{-s_1} \left[M \left(\frac{|x_{k+n}|}{\rho} \right) \right]^p \]

this inequality implies that \(L_M(p,s_1) \subset L_M(p,s_2) \).

Definition. (Krasnoselskii and Rutitsky [6]) An Orlicz function is said to satisfy \(\Delta_2 \)-condition for all values of \(u \), if there exists a constant \(K > 0 \), such that

\[M(2u) \leq K M(u), \quad u \geq 0. \]

The \(\Delta_2 \)-condition is equivalent to the satisfaction of the inequality

\[M(Lu) \leq KLM(u) \]

for all values of \(u \) and for \(L > 1 \).

Theorem 5. Let \(M \) be an Orlicz function which satisfies \(\Delta_2 \)-condition. Then

(i). \(L_\infty \subset L_M(p,s) \),

(ii). \(L(p,s) \subset L_M(p,s) \).

Proof (i). Let \(x \in L_\infty \). This implies that \(|x_{k+n}| \leq N \) for all \(k \) and \(n \). So that
\[k^{-s} \left[M \left(\frac{|x_{k+n}|}{\rho} \right) \right]^{p_k} \leq k^{-s} \left[M \left(\frac{N}{\rho} \right) \right]^{p_k} \leq k^{-s} [KLM(N)]^H \text{ by } \Delta_2 \]

condition, where \(H = \max(1, \sup_k p_k) \). Hence

\[\sum_k k^{-s} \left[M \left(\frac{|x_{k+n}|}{\rho} \right) \right]^{p_k} < \infty . \]

This shows that \(l_{\infty} \subset l_M(p,s) \).

(ii). Using the same technique of Theorem 3 by Esi [8] it is easy to prove the Theorem.

Now we investigate some properties of spaces \(c_0 (M,p,s) \), \(c(M,p,s) \) and \(l_{\infty} (M,p,s) \) defined earlier. We first state simple property of these spaces.

Theorem 6. Let \(p = (p_k) \) be bounded. Then \(c_0 (M,p,s) \), \(c(M,p,s) \) and \(l_{\infty} (M,p,s) \) are linear spaces.

Proof. Omitted.

Theorem 7. Let \(\sup_k p_k = H < \infty \). Then \(c_0 (M,p,s) \) is a linear topological space paranormed by

\[g(x) = \inf \left\{ \rho / H : \left[\rho^{-s} \left(M \left(\frac{|x_{k+n}|}{\rho} \right) \right]^{p_k} \right]^{1/H} \leq 1, \quad n = 1,2,..., s \geq 0 \right\} . \]

Proof. Omitted.

Theorem 8

(i). Let \(0 < \inf p_k \leq p_k \leq 1 \). Then \(c_0 (M,p,s) \subset c_0 (M,s) \), \(c(M,p,s) \subset c(M,s) \) and \(l_{\infty} (M,p,s) \subset l_{\infty} (M,s) \).

(ii). Let \(1 \leq p_k \leq \sup_k p_k < \infty \). Then \(c_0 (M,s) \subset c_0 (M,p,s) \), \(c(M,s) \subset c(M,p,s) \), and \(l_{\infty} (M,s) \subset l_{\infty} (M,p,s) \).

Proof (i). Let \(x \in c_0 (M,p,s) \). Since \(0 < \inf p_k \leq 1 \), we get
\(k^{-s} \left[M \left(\frac{|X_{k+n}|}{\rho} \right) \right] \leq k^{-s} \left[M \left(\frac{|X_{k+n}|}{\rho} \right) \right]^{p_k} \) for all \(n \),

and hence \(x \in c_0(M,s) \).

(ii). Let \(1 \leq p_k \leq \sup p_k < \infty \) for each \(k \) and \(x \in c_0(M,s) \). Then for each \(0 < \varepsilon < 1 \) and for all \(n \), there exists a positive integer \(N \) such that

\[
k^{-s} \left[M \left(\frac{|X_{k+n}|}{\rho} \right) \right] \leq \varepsilon < 1
\]

for all \(k \geq N \) and \(s \geq 0 \). This implies that

\[
k^{-s} \left[M \left(\frac{|X_{k+n}|}{\rho} \right) \right]^{p_k} \leq k^{-s} \left[M \left(\frac{|X_{k+n}|}{\rho} \right) \right].
\]

Thus we get \(x \in c_0(M,p,s) \).

The other inclusions can be treated similarly.

Theorem 9

(i). Let \(0 < p_k \leq q_k < \infty \) and \(\frac{q_k}{p_k} \) be bounded. Then \(c_0(M,q,s) \subset c_0(M,p,s) \) and \(c(M,q,s) \subset c(M,p,s) \).

(ii). Let \(M \) be an Orlicz function which satisfies \(\Delta_2 \)-condition. Then \(c_0(p,s) \subset c_0(M,p,s) \), \(c(p,s) \subset c(M,p,s) \) and \(l_\infty(p,s) \subset l_\infty(M,p,s) \).

(iii). \(c(M_1,p,s) \cap c(M_2,p,s) \subset c(M_1+M_2,p,s) \)

where \(M_1 \) and \(M_2 \) are two Orlicz functions and \(s \geq 0 \).

(iv). \(s_1 \leq s_2 \) implies \(c(M,p,s_1) \subset c(M,p,s_2) \).

Proof (i). If we take

\[
t_k = k^{-s} \left[M \left(\frac{|X_{k+n}|}{\rho} \right) \right]^{p_k}
\]
for all n, k and $s \geq 0$, then using the same technique of Theorem 2 of Nanda [7], it is easy to prove (i).

(ii) Proof is similar to Theorem 5 (ii).

Using the same technique of Theorem 3 by Esi [9], it is easy to prove Theorem 9(iii) and (iv)

REFERENCES

