DISCRETE SETS AND IDEALS

M. BAYRAKTAR

University of Uludag, Faculty of Science, Dept. of Maths. Turkey.

(Received Oct. 17, 2000; Accepted Dec. 12, 2000)

ABSTRACT

In this paper, the discrete sets and corresponding dual ideals and principal maximal ideals in \(B(X) \) are studied, where \(X \) is an \(n \)-dimensional complex manifold and \(B(X) \) is a ring (algebra) of holomorphic functions defined on \(X \).

1. INTRODUCTION

a) Let us denote the open unit disc in \(\mathbb{C} \) by \(U \) and the unit disc bounding \(U \) by \(T \). Similarly, in \(\mathbb{C}^n \), the open unit disc and its boundary are defined by

\[U^n = \{ z \in \mathbb{C}^n : |z_i| < 1, \ 1 \leq i \leq n \} \]

and

\[T^n = \{ z \in \mathbb{C}^n : |z_i| = 1, \ 1 \leq i \leq n \} \]

respectively.

\(U^n \) is the cartesian product of \(U \) by itself \(n \) times and \(T^n \) is the cartesian product of \(T \) by itself \(n \) times. For \(n > 1 \), \(T^n \) is a subset of the topological boundary \(\partial U^n \). If \(n=1 \), then \(U'=U \) and \(T'=\partial T \).

b) More generally, an open polydisc in \(\mathbb{C}^n \) is the cartesian product of \(n \) open discs. The polydisc with radius \(r = (r_1, r_2, \ldots, r_n) \) and center \(z^0 = (z_1^0, z_2^0, \ldots, z_n^0) \) is

\[P_r^n = \{ z \in \mathbb{C}^n : |z_i - z_i^0| < r_i, \ 1 \leq i \leq n \} \]

and the boundary of \(P_r^n \) is defined by
\[T^n_r = \{ z \in \mathbb{C}^n : |z_i - z_i^0| = r_i, 1 \leq i \leq n \} \]

The closure of \(U^n \) defined by \(\overline{U}^n \). Then \(\overline{U}^n = U^n \cup T^n \). i.e.

\[\overline{U}^n = \{ z \in \mathbb{C} : |z_i - z_i^0| \leq 1, 1 \leq i \leq n \} \]

The problem of discarding the slower is of great importance in practice, [6].

1.1. Definition. Let \(X \) be a topological space and let \(D \subset X \). If \(D \) has no limit points, then it is called a discrete subset (of \(X \)).

Let \(G \) be a region (open connected set) in \(\mathbb{C} \), and let \(A(G) \) be the ring (or complex algebra) of complex valued analytic functions in \(G \). The set of zeros of \(f \) in \(G \), \(S(f) = \{ z \in G : f(z) = 0 \} \), for \(f \in A(G) \), is a discrete set.

Here \(S(f) \) is thought algebraically. That is, the zeros are counted by multiplicity in \(S(f) \) and also in the union and intersection. If \(K \) is a subset of \(A(G) \), then \(S(K) = \bigcup_{f \in K} S(f) \). The following lemmas are well-known from [3].

1.2. Lemma. Let \(\{ x_k \}_{k=1}^\infty \) be a discrete sequence, \(\{ m_k \} \) be a discrete sequence of positive integers and \(\{ \beta_{k,p} : p = 0,1,\ldots,m_{k-1} : k = 1,2,\ldots \} \) be a sequence of complex numbers. Then there exists an \(f \in A(G) \) so that \(f^{(p)}(\alpha_k) = \beta_{k,p} \) (\(p = 0,1,\ldots,m_{k-1} : k = 1,2,\ldots \)).

1.3. Lemma. Let \(f_1, f_2 \in A(G) \) and let \(S(f_1) \cap S(f_2) = \emptyset \). Then for every \(h \in A(G) \), there exist \(g_1, g_2 \in A(G) \) so that \(h = f_1 g_1 + f_2 g_2 \).

1.4. Lemma. If \(f_1, f_2 \in A(G) \), then there exists \(g_1, g_2 \in A(G) \) so that \(S(f_1 g_1 + f_2 g_2) = S(f_1) \cap S(f_2) \).

2. Dual Ideals

Let \(I \) be an ideal of \(A(G) \). If there exists a point \(z_0 \in G \) so that \(f(z_0) = 0 \) for every \(f \in I \), then \(I \) is called an ideal of type I, and in general it is denoted by \(I_{z_0} \). Then

\[I_{z_0} = \{ f \in A(G) : f(z_0) = 0 \} \]
Other ideals of \(A(G) \) are called of type II.

2.1. Definition. Let us denote a family of nonempty discrete subsets of \(G \) by \(H \). If the following conditions are satisfied, then \(H \) is called the dual ideal (of \(G \)).

1) If \(D_1, D_2 \in H \) then \(D_1 \cap D_2 \in H \)
2) If \(D_1 \in H \) and \(D_2 \) is a discrete subset of \(G \) such that \(D_1 \subseteq D_2 \), then \(D_2 \in H \).

By Zorn lemma there exists a maximal dual ideal. (Let \(B \) be a dual ideal of \(G \). If there is not a dual ideal \(B' \) of \(B \) so that \(B' \) contains \(B \) as a proper subset then \(B \) is called maximal dual ideal.) If \(B \) is a maximal dual ideal, then there exists a discrete set \(D \in H \) such that \(D \cap D^\prime = \phi \) for every discrete subset \(D' \) not belonging to \(H \).

Let \(B \) be the maximal dual ideal of discrete subsets of \(G \). If there exists a point \(z_0 \in G \) such that \(z_0 \in D \) for every \(D \in H \) then \(B \) is called a maximal dual ideal of type I. All other maximal dual ideals of discrete subsets of \(G \) are called maximal dual ideals of type II.

2.2. Theorem. 1) For every maximal dual ideal \(B \) of discrete subsets of \(G \)
\(I(B) = \{ f, f \in A(G), S(f) \in B \} \) is a maximal dual ideal of \(A(G) \).
2) Conversely, for every maximal ideal \(I \) of \(A(G) \), \(B(I) = \{ S(f) : f \in I \} \) is a maximal dual ideal of discrete subsets of \(G \).
3) Let us denote the set of maximal ideals of \(A(G) \) by \(M \) and the set of maximal dual ideals of discrete subsets of \(G \) by \(N \). Then the maps \(\phi \) and \(\psi \) defined by \(\phi : N \rightarrow M \), \(\phi(B) = I(B) \) and \(\psi : M \rightarrow N \), \(\psi(I(B)) = B \) are one to one and onto. \(B \) is a maximal dual ideal of type I or II according as the corresponding \(I(B) \) is a maximal ideal of type I or II [3].

2.3. Theorem. Let \(R \) be an open Riemann surface, \(A(R) \) be ring of analytic functions defined on \(R \) and \(B \) be a dual ideal of \(R \) then \(I(B) = \{ f \in A(R) : S(f) \in B \} \) is an ideal of \(A(R) \).

Proof. If \(f_1, f_2 \in I(B) \) then \(S(f_1), S(f_2) \in B \). Since \(B \) is a dual ideal \(S(f_1) \cap S(f_2) \subseteq S(f_1 \cdot f_2) \), \(S(f_1 \cdot f_2) \in B \) and therefore \(f_1 \cdot f_2 \in I(B) \).

Let \(f \in I(B) \) and \(g \in A(R) \) be arbitrary. As \(S(f) \in B \) and \(S(f) \subseteq S(fg) \) we have \(S(fg) \in B \).

Then \(fg \in I(B) \) and therefore \(I(B) \) is an ideal of \(A(R) \). Also if \(B_1 \subseteq B_2 \) then \(I(B_1) \subseteq I(B_2) \) is obvious.

2.4. Theorem. \(A_D^1 = \{ f \in A(G) : \text{ for every } z \in D, f'(z) = 0 \} \) is a subring of \(A(G) \) for a discrete subset \(D \) of \(G \). (Here \(f' \) denotes the derivative of \(f \).)
Proof. If $f, g \in A_D^1$ then as $(f' - g')(z) = (f' - g')(z) = 0$ for every $z \in D$, $f - g \in A_D^1$. Similarly as $(f'')(z) = 0$ for every $z \in D$, A_D^1 is a subring of $A(G)$.

Corollary. If $A_D^{(n)} = \{ g \in A_D^{(n-1)} : g^{(n)}(z) = 0 \, z \in D, \, n \geq 2 \}$ then $A_D^{(n)}$ is a subring of $A_D^{(n-1)}$. Further $\bigcap_{n=1}^{\infty} A_D^{(n)} = C$.

Proof. If $f \in \bigcap_{n=1}^{\infty} A_D^{(n)}$ then $f^{(n)}(z) = 0$ for $n = 1, 2, \ldots$ ($z \in D$) This implies that f is a constant.

3. COVERING SPACES

3.1. Definition. Let X and \tilde{X} be two topological spaces and let $p: \tilde{X} \to X$ be a continuous map. If the following conditions are satisfied then \tilde{X} is called the covering space of X.

1) For every $x \in X$, there exists an open neighbourhood W of x so that $p^{-1}(W)$ is union of some open sets W_α in \tilde{X} ($\alpha \in I$).
2) $p|_{W_\alpha}$ is a local homeomorphism of W_α onto W ($\alpha \in I$).

If \tilde{X} is a covering space of X, the map p is called a covering map. If $p(\tilde{X}) = X$ then X is called the projection of \tilde{X}.

3.2. Definition. Let \tilde{X} be a covering space of X, $p: \tilde{X} \to X$ a covering map and $g: \tilde{X} \to \tilde{X}$ be a homeomorphism. If $p \circ g = p$ i.e. $p(g(\tilde{x})) = p(\tilde{x})$ then g is called a covering map of \tilde{X}.

Hence a covering map permutes the points with the same projections. The covering transformations form a group under combination. This group is called the group of covering transformations, [2], [4].

Let $p: \tilde{X} \to X$ be a covering map and $x \in X$ where X is a Hausdorff space. Let W be a neighbourhood of x in the meaning of Definition 3.1. Let us take a neighbourhood U of x so that $\tilde{U} \subset W$. If we form a set $K = \{ k_\alpha \}$ for each W_α where $k_\alpha \in (W_\alpha \cap p^{-1}(U))$ then the following lemma can be given.

3.3. Lemma. K is a discrete set.

Proof. Conversely let us suppose k is a limit point of K. Let V be a neighbourhood of $p(k)$. Since p is continuous, there exists a neighbourhood V_1 of k so that $p(V_1) \subset V$. Let $k_\alpha \in (V_1 - k) \cap K$ then $p(k_\alpha) \in U$. Hence $V \cap U \neq \emptyset$. That is the
intersection of a neighbourhood of \(p(k) \) with \(U \) is nonempty. Hence \(p(k) \) is a limit point of \(U \). That is \(p(k) \in \overline{U} \). Since \(\overline{U} \subset W \), there exists a \(W_{\alpha} \) so that \(k \in W_{\alpha} \). But there can only be \(k_{\alpha} \) in \(W_{\alpha} \) by hypothesis. Therefore \(k \) can not be a limit point of \(K \).

Notice that if \(\widetilde{X} \) is a covering space of \(X \) and \(p: \widetilde{X} \rightarrow X \) is a covering map then \(p^{-1}(x) \) has a discrete topology for every \(x \in X \). Because the intersection of the open set \(W_\alpha \) with \(p^{-1}(x) \) consist of one point. Therefore this point is open in the subspace topology on \(p^{-1}(x) \). Further for \(x, y \in X \) the cardinalities of \(p^{-1}(x) \) and \(p^{-1}(y) \) are equal.

3.4. Definition. Let \(R \) be a Riemann surface and \(D \) be a discrete subset of \(R \). The ideal \(I_0 = \{ f \in A(R): f(p) = 0, \text{ for } p \in D \} \) is called discrete ideal of \(A(R) \). For \(I_q = \{ f \in A(R): f(q) = 0 \} \) we can give the following theorem.

3.5. Theorem. Let \(R \) and \(\widetilde{R} \) be two Riemann surfaces, \(\widetilde{R} \) be a covering surface of \(R \), \(p: \widetilde{R} \rightarrow R \) be a covering map and \(g: \widetilde{R} \rightarrow \widetilde{R} \) be a covering transformation. Then

a) Let \(A = \{ I_{q_i} : q_i \in p^{-1}(x) \} \) for \(x \in R \). Then the map \(\phi : A \rightarrow A, \phi(q_i) = I_{g(q_i)} \) is one-to-one and onto.

b) Let \(B = \{ I_{p^{-1}(x)} : x \in R \} \). Then \(\psi : R \rightarrow B, \psi(x) = I_{p^{-1}(x)} \) is one-to-one and onto.

Proof. a) First we show that \(\phi \) is a map. If \(I_{q_1} = \{ f \in A(\widetilde{R}): f(q_1) = 0 \} = I_{q_2} = \{ g \in A(\widetilde{R}): g(q_2) = 0 \} \) then there exists \(f \in I_{q_1} \) so that \(S(f) = \{ q_i \} \) by \([1]\) and \(I_{q_1} = \{ f \in I_{q_1} \} \). Since \(f \in I_{q_1} \), \(f(q_2) = 0 \). Then \(q_1 = q_2 \). Therefore since \(g(q_1) = g(q_2) \), \(\phi(I_{q_1}) = \phi(I_{q_2}) \). That is \(\phi \) is a map. If \(\phi(I_{q_1}) = \phi(I_{q_2}) \), then \(I_{g(q_1)} = I_{g(q_2)} \Rightarrow g(q_1) = g(q_2) \Rightarrow q_1 = q_2 \Rightarrow I_{q_1} = I_{q_2} \), i.e. \(\phi \) is one-to-one. Finally let \(I_{q_1} \in A \). Since \(g \) is onto there exists a \(q_i \in p^{-1}(x) \) so that \(g(q_i) = q_i \). Then \(\phi(I_{q_1}) = I_{q_1} \).

b) It is easy to see that \(\psi \) is a map. To show that it is one-to-one let \(\psi(x) = \psi(y) \), i.e. \(I_{p^{-1}(x)} = I_{p^{-1}(y)} \). Then since \(p^{-1}(x) \) is a discrete set, by generalized Weierstrass theorem there exists a \(f \in A(R) \) so that \(S(f) = p^{-1}(x) \) \([5]\). But since \(f \in I_{p^{-1}(y)} \), \(S(f) = p^{-1}(y) \). Let \(x = y \), where \(x \in p^{-1}(x) \) and \(y \in p^{-1}(x) \). Then \(x = p(x_i) = p(y_i) = y \). This shows that \(\psi \) is one-to-one. By the definition \(\psi \) is onto.
4. n-DIMENSIONAL COMPLEX MANIFOLDS

4.1. Definition. Let X be a topological space, U be an open subset of X, and \(\psi \) be a topological map from U to \(\mathbb{C}^n \). The pair \((U, \psi)\) is called coordinate card or card in X. If \(a \in U \) then \((U, \psi)\) is said to contain a.

4.2. Definition. Let X be a connected Hausdorff space and \(\phi = \{(U_i, \psi_i): i \in I\} \) be set of cards in X. If the following conditions are satisfied then \(X=(X, \phi) \) is called an n-Dimensional Complex Manifold.

1) Every \(x \in X \) is in only one card. That is the family \(\{U_i: i \in I\} \) forms an open cover of X.

2) If \((U_1, \psi_1), (U_2, \psi_2) \in \phi \) and \(U_1 \cap U_2 \neq \phi \) then

\[
\psi_{12} = \psi_1 \circ \psi_2^{-1}: \psi_2(U_1 \cap U_2) \to \psi_1(U_1 \cap U_2)
\]

is a topological map.

When \(\psi_{12} \) is analytic, the manifold \(X=(X, \phi) \) is called n-Dimensional Analytic Manifold. Here the family \(\phi \) is called an analytic structure (or atlas) on X. Every \(x \in U_i \) is determined uniquely by \(\psi_i(x) \). These \(\psi_i \)'s are called local parameters or local variables, [7].

Let \(X=(X, \phi) \) be an analytic manifold and \(W \subset X \) be an open set. Further suppose that \(x_0 \in W \) and \(f \) is a complex valued function on W. If there exists a neighbourhood \(U_{(x_0)} \) of \(x_0 \) so that \(U_{(x_0)} \subset W \cap U_i \) where \(f \circ \psi_i^{-1} \) is holomorphic in \(\psi_i(U_i) \subset B \), then \(f \) is called holomorphic at \(x_0 \). (\(B \) is an open set in \(\mathbb{C}^n \)) If \(f \) is holomorphic at every point of W then \(f \) is called holomorphic on W. In particular if \(W=X \) then \(f \) is holomorphic on X.

4.3. Theorem. Let X be an analytic manifold of dimension n and \(B(X) \) be a ring of bounded, holomorphic functions (or complex algebra) defined on X. Also suppose that

1) For every \(x \in X \) there exists an \(f \in B(X) \) having a simple zero at \(x \) and no other zeros.

2) For every discrete sequence \((x_n) \) in X there exists \(f \in B(X) \) so that \(\lim f(x_n) \) does not exist.

Then the necessary and sufficient condition for a maximal ideal in \(B(X) \) to be essential is that it is of the first type.

Proof. First we suppose that \(1 \in B(X) \) is essential, i.e. \(1 = \langle f, f = \{gf: g \in B(X)\} \)

\(f \) has a zero. Then \(\inf \{|f(x)|: x \in X\} = 0 \). In this case there exists a sequence \((x_n) \) in
X so that \(\lim f(x_n) = 0 \). If \(g \in I \) then there exists \(h \in B(X) \) so that \(g = fh \). Since \(h \) is bounded \(\lim g(x_n) = 0 \). Then for every \(g \in B(X) \) \(\lim g(x_n) \) exists. By hypothesis \((x_n) \) can not be discrete. That is \(x_n \to x \in X \). Therefore the necessary and sufficient condition for \(g \in B(X) \) to be \(g \in I = \{ f \in B(X) : f(x_0) = 0 \} \) then by hypothesis there exists an \(f \in B(X) \) having a simple zero at \(x_0 \) but no other zeros. Now let us think the essential ideal \(< f > \). It is clear that \(f \) is a proper ideal. If \(\phi : B(X) \to \mathbb{C} \), \(\phi(g) = g(x_0) \) is defined then the kernel of \(\phi \) is \(< f > \) and the ideal \(< f > \) is maximal. But as \(I_{x_0} \) is maximal, \(I_{x_0} = < f > \). That is the first type maximal ideal of \(B(X) \) is essential maximal ideal.

REFERENCES

