PROPERTIES OF 2-DIMENSIONAL SPACE-LIKE RULED SURFACES IN THE MINKOWSKI SPACE \mathbb{R}_1^n

İsmail AYDEMİR* - Murat TOSUN** - Nuri KURUOĞLU*

* Department of Mathematics, Faculty of Education, Ondokuz Mayıs University, Samsun, TURKEY
** Department of Mathematics, Faculty of Arts and Sciences, Sakarya University, Sakarya, TURKEY

(Received May 26, 1997; Revised Dec. 6, 1997; Accepted Dec. 9, 1997)

ABSTRACT

In this paper we find new characteristic properties for 2-dimensional ruled surface M in \mathbb{R}_1^n and give the sufficient and necessary conditions for which the space-like ruled surface M is to be total geodesic. In addition, some characterisation which is the well-known for the ruled surfaces in the Euclidean 3-space was generalized for the space-like ruled surfaces in \mathbb{R}_1^n.

1. INTRODUCTION

We shall assume throughout this paper that all manifolds, maps, vector fields, etc... are differentiable of class C^∞. Consider a general submanifold M of the Minkowski space \mathbb{R}_1^n. Suppose that, \overrightarrow{D} is the Levi-Civita connection of Minkowski space \mathbb{R}_1^n, while D is the Levi-Civita connection of Semi Riemann manifold M. If X and Y are the vector fields of M and if V is second fundamental form of M, we have by decomposing $D_X Y$ in a tangential and normal component.

$$\overrightarrow{D}_X Y = D_X Y + V(X,Y) \quad (1.1)$$

The equation (1.1) is called Gauss equation, [1].

If ξ is any normal vector filed on M, we find the Weingarten equation by decomposing $\overrightarrow{D}_X \xi$ in a tangential and normal component

$$\overrightarrow{D}_X \xi = -A_\xi + D_X \xi. \quad (1.2)$$
Aₐ determines at each point a self-adjoint linear map and Dₐ is a metric connection in the normal bundle χₐ(M). We use the same notation Aₐ for the linear map and the matrix of the linear map, [1].

A normal vector field ξ is called parallel in the normal bundle χₐ(M) if we have Dₓξ = 0 for each vector X. If η is a normal unit vector at the point p ∈ M, then

\[G(p, η) = \det A_η \] \hspace{1cm} (1.3)

is the Lipschitz-Killing curvature of M at p in direction η, [2].

Suppose that X and Y are vector fields on M, while ξ is a normal vector field on χₐ(M). If the standard metric tensor of \(\mathbb{R}^n \) is denoted by \(<\cdot, \cdot>\) then we have

\[\langle Dₓ Y, ξ \rangle = \langle V(X, Y) ξ \rangle \] \hspace{1cm} (1.4)

and

\[\langle Dₓ X, ξ \rangle = \langle A_ξ(X), Y \rangle . \] \hspace{1cm} (1.5)

From the above equations we obtain

\[\langle V(X, Y) ξ \rangle = \langle A_ξ(X), Y \rangle \] \hspace{1cm} (1.6)

If ξ₁, ξ₂, ..., ξₙ₂ constitute an orthonormal base field of the normal bundle χₐ(M), then we set

\[\langle V(X, Y) ξ_j \rangle = V_j(X, Y) \] \hspace{1cm} (1.6)

or

\[V(X, Y) = \sum_{j=1}^{n²} V_j(X, Y) ξ_j. \] \hspace{1cm} (1.7)

The mean curvature vector H of M at the point p is given by

\[H = \sum_{j=1}^{n²} \frac{\text{tr} A_ξ}{2} ξ_j. \] \hspace{1cm} (1.8)

||H|| is the mean curvature. If H = 0 at each point p of M, then M is said to be minimal, [1].
PROPERTIES OF 2-DIMENSIONAL SPACE-LIKE RULED SURFACES...

2. 2-DIMENSIONAL SPACE-LIKE RULED SURFACES IN \mathbb{R}^n_1

Let α be a space-like curve and $e(s)$ be a space-like unit vector on the generators in \mathbb{R}^n_1. If the space-like base curve α is an orthogonal trajectory of the generators then we get a 2-dimensional ruled surface M. This ruled surface is called 2-dimensional space-like ruled surface and represented by

$$\psi(s,v) = a(s) + v e(s).$$

Definition 2.1: Let M be 2-dimensional space-like ruled surface in \mathbb{R}^n_1 and V be second fundamental form of M. If $V(X,X) = 0$ for all $X \in \chi(M)$ then X is called an asymptotic vector field on M.

Theorem 2.1: Let M be 2-dimensional space-like ruled surface in \mathbb{R}^n_1. Then the generators of M are asymptotics and geodesics of M.

Proof: Since the generators are the geodesics of \mathbb{R}^n_1, we have

$$\overline{D}e = 0.$$

If we set this in the Gauss equation, we get

$$D_e e + V(e,e) = 0$$

or

$$D_e e = -V(e,e).$$

Since $D_e e \in \chi(M)$ and $V(e,e) \in \chi^1(M)$ we get $D_e e = 0$ and $V(e,e) = 0$.

Therefore the generators of M are the asymptotics and geodesics of M.

Suppose that $\{e_1, e_i\}$ is an orthonormal base field of the tangential bundle $\chi(M)$ and $\{\xi_1, \xi_2, ..., \xi_{n-2}\}$ is an orthonormal bundle $\chi^1(M)$. Then we have the following equations.

$$\overline{D}_{\xi} \xi_j = a_{1j}^1 e + a_{1j}^2 e_1 + \sum_{i=1}^{n-2} b_{1i}^j \xi_i, \quad 1 \leq j \leq n-2$$

$$\overline{D}_{\xi_1} \xi_j = a_{2j}^1 e + a_{2j}^2 e_1 + \sum_{i=1}^{n-2} b_{2i}^j \xi_i, \quad 1 \leq j \leq n-2$$ \hspace{1cm} (2.1)

From these equations we observe that

$$a_{21}^j = -a_{12}^j, \quad a_{11}^j = 0, \quad 1 \leq j \leq n$$

and
\[
A_{\xi_j} = \begin{bmatrix}
0 & a_{12}^j \\
-a_{12}^j & 0
\end{bmatrix}.
\] (2.2)

Then we have the following corollary.

Corollary 2.1: The matrix \(A_{\xi_j}\) is corresponding to the shape operator of \(M\) and \(A_{\xi_j}\) is a symmetric matrix in the sense of Lorentz.

Corollary 2.2: The Lipschitz-Killing curvature at \(p \in M\) in the direction of \(\xi_j\) is given by

\[
G(p,\xi_j) = -(a_{12})^j.
\]

From (2.1) we have

\[
a_{12}^j = \langle \overline{D}_{\varepsilon_1} \xi_j, \varepsilon_1 \rangle = -\langle \xi_j, \overline{D}_{\varepsilon_1} \varepsilon_1 \rangle
\] (2.3)

and

\[
\langle \overline{D}_{\varepsilon_1} \varepsilon_1 \rangle = -\langle \varepsilon_1, \overline{D}_{\varepsilon_1} \varepsilon_1 \rangle = 0
\] (2.4)

while

\[
\langle \overline{D}_{\varepsilon_1} \varepsilon_1 \rangle = -\langle \varepsilon_1, \overline{D}_{\varepsilon_1} \varepsilon_1 \rangle = 0.
\] (2.5)

From (2.4) and (2.5) we observe that

\[
\overline{D}_{\varepsilon_1} \varepsilon_1 \in \chi^1(M) \text{ or } \overline{D}_{\varepsilon_1} = V(\varepsilon_1).\]

Because of (2.3) we have

\[
\overline{D}_{\varepsilon_1} = V(\varepsilon_1) = \sum_{j=1}^{n^2} \varepsilon_j \langle \xi_j, \overline{D}_{\varepsilon_1} \varepsilon_1 \rangle \xi_j = -\sum_{j=1}^{n^2} \varepsilon_j a_{12}^j \xi_j
\] (2.6)

\[
\varepsilon_j = \langle \xi_j, \xi_j \rangle = \begin{cases}
-1, & \xi_j \text{ time-like} \\
1, & \xi_j \text{ space-like}
\end{cases}.
\]

Because of (1.4) and (2.1) we find

\[
a_{22}^j = \langle \overline{D}_{\xi_j} \varepsilon_1, \varepsilon_1 \rangle = -\langle A_{\xi_j} (\varepsilon_1), \varepsilon_1 \rangle = -\langle \mathcal{V}(\varepsilon_1, \varepsilon_1), \xi_j \rangle
\] (2.7)

and

\[
\text{tr } A_{\xi_j} = -a_{22}^j = \langle \mathcal{V}(\varepsilon_1, \varepsilon_1), \xi_j \rangle, \quad 1 \leq j \leq n^2.
\] (2.8)
Theorem 2.2: Let M be 2-dimensional space-like ruled surface in \mathbb{R}^n_1 and $\{e_1,e\}$ be the orthonormal base field of the tangential bundle $\chi(M)$. Then the Gauss curvature G can be given as follows

$$G = \langle \overline{D}_e e_1, \overline{D}_e e_1 \rangle.$$

Proof: Let R be the Riemannian curvature tensor field of M. In this case we get

$$G = \langle R(e_1,e) e, e_1 \rangle, \quad [3]. \quad (2.9)$$

By combining (2.9) and $V(e,e) = 0$ we are faced with

$$G = \langle V(e,e_1), V(e,e_1) \rangle$$

or

$$G = \langle \overline{D}_e e_1, \overline{D}_e e_1 \rangle.$$

From the above Theorem 2.2 Corollary 2.2 and the equation (2.6) we have the following corollaries.

Corollary 2.3: The Gauss curvature of M with respect to the elements of $A_{i,j}$.

$$G = \sum_{j=1}^{n^2} \varepsilon_j \left(\frac{\langle e_1 \rangle}{2} \right)^2. \quad (2.11)$$

Corollary 2.4: A space-like ruled surface M is developable if and only if the Lipschitz-Killing curvature is zero at each point.

Theorem 2.3: Let M be a 2-dimensional space-like ruled surface in \mathbb{R}^n_1. The mean curvature of M is

$$H = \frac{1}{2} \varepsilon_j V(e_1,e_1).$$

Proof: From (1.8) we know that

$$H = \sum_{j=1}^{n^2} \text{tr} \frac{A_{i,j}}{2} \xi_j. \quad (2.12)$$

For the matrix $A_{i,j}$ given (2.2) we find

$$\text{tr} A_{i,j} = -a_{i,2}^j.$$
If we substitute (2.8) in (1.8) we get
\[H = \frac{1}{2} \varepsilon_j V(e_1, e_j). \]

Theorem 2.4: Let \(M \) be 2-dimensional space-like ruled surface in \(\mathbb{R}^n_1 \). \(M \) is developable and minimal iff \(M \) is total geodesic.

Proof: We assume that \(M \) is developable and minimal. If \(X, Y \in \chi(M) \), we have \(X = ae + be_1 \) and \(Y = ce + de_1 \).

Therefore we get
\[V(X, Y) = ac V(e, e) + (ad + bc) V(e, e_1) + bd V(e_1, e_1). \]

Because of Theorem 2.1 and minimality of \(M \) we have \(V(e, e) = 0 \) and \(V(e_1, e_1) = 0 \). Moreover, since \(M \) is developable \(\bar{D}_e e_1 = 0 \). Thus we can write \(V(e, e_1) = 0 \) and \(V(X, Y) = 0 \) for all \(X, Y \in \chi(M) \).

Now suppose that \(V(X, Y) = 0, \ \forall X, Y \in \chi(M) \). Then we have \(V(e, e) = 0 \), \(V(e, e_1) = 0 \). Because of Theorem 2.1 we have
\[\langle \bar{D}_e e_1, e \rangle = 0 \text{ and } \langle \bar{D}_e e_1, e_1 \rangle = 0. \]

This means that \(\bar{D}_e e_1 \) is a normal vector field or \(\bar{D}_e e_1 = V(e, e_1) \).

Therefore we have \(\bar{D}_e e_1 = 0 \). This implies that \(M \) is developable and \(V(e, e_1) = 0 \) implies that \(M \) is minimal.

Let \(M \) be 2-dimensional space-like ruled surface in \(\mathbb{R}^n_1 \) and \(e \) be unit space-like vector field of the generator. Then we have the following equations of covariant derivative of the orthonormal base field \(\{ e, e_1, \xi_1, \xi_2, ..., \xi_{n-2} \} \).

\[
\begin{align*}
\bar{D}_{e_1} e_1 &= c_{11} e_1 + c_{12} e + c_{13} \xi_1 + ... + c_{1n} \xi_{n-2} \\
\bar{D}_{e_1} e &= c_{21} e_1 + c_{22} e + c_{23} \xi_1 + ... + c_{2n} \xi_{n-2} \\
\bar{D}_{e_1} \xi_1 &= c_{31} e_1 + c_{32} e + c_{33} \xi_1 + ... + c_{3n} \xi_{n-2} \\
&... \\
\bar{D}_{e_1} \xi_{n-2} &= c_{n1} e_1 + c_{n2} e + c_{n3} \xi_1 + ... + c_{nn} \xi_{n-2}.
\end{align*}
\]
If we write these equations in the matrix form we get

\[
\begin{bmatrix}
\overline{D}_{\xi} e_1 \\
\overline{D}_{\xi} e \\
\overline{D}_{\xi} \xi \\
\vdots \\
\overline{D}_{\xi} \xi_{n-2}
\end{bmatrix}
=
\begin{bmatrix}
0 & c_{12} & c_{13} & \cdots & c_{1n} \\
- c_{12} & 0 & c_{23} & \cdots & c_{2n} \\
- \varepsilon_1 c_{13} & - \varepsilon_1 c_{23} & 0 & \cdots & c_{3n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
- \varepsilon_1 c_{1n} & - \varepsilon_1 c_{2n} & - c_{3n} & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
e_1 \\
e \\
\xi_1 \\
\vdots \\
\xi_{n-2}
\end{bmatrix}
\]

(2.13)

Theorem 2.5: Let \(M \) be a 2-dimensional space-like ruled surface in \(\mathbb{R}^n \), \(\{ e_1, e \} \) be an orthonormal base field of the tangential bundle \(\chi(M) \) and \(\alpha(s) \) be an orthonormal trajectory of the generators of \(M \). Then the following propositions are equivalent.

i) \(M \) is developable

ii) The Lipschitz-Killing curvature

\(G(p, \xi_j) = 0 \), \(1 \leq j \leq n-2 \)

iii) The Gauss curvature \(G = 0 \).

iv) In the equation (2.13), \(e_{2k} = 0 \), \(3 \leq k \leq n \).

v) \(A_{\xi_j}(e) = 0 \)

vi) \(\overline{D}_{\xi_j} e \in \chi(M) \).

Proof: i \(\Rightarrow \) ii : We assume that \(M \) is developable, since \(a_{11}^j = 0 \) in (2.1), \(1 \leq j \leq n-2 \), the Lipschitz-Killing curvature at point \(p \) in the direction of \(\xi_j \) is given by

\[
G(p, \xi_j) = - \left(a_{12}^j(p) \right)^2 = 0 \quad , \quad 1 \leq j \leq n-2 .
\]

Because of (2.6) and since \(M \) is developable we have

\[
\overline{D}_{\xi_j} e_1 = - \sum_{j=1}^{n-2} \varepsilon_j (a_{12}^j) \xi_j = 0 .
\]

So we find \(G(p, \xi_j) = 0 \), \(1 \leq j \leq n-2 \).

ii \(\Rightarrow \) iii : Let \(G(p, \xi_j) = 0 \), \(1 \leq j \leq n-2 \).
Since we have

\[G(p) = -\sum_{j=1}^{n^2} \xi_j \xi_j^* \quad \forall \ p \in M \]

we observe that \(G = 0, \forall \ p \in M. \)

\(\text{iii} \Rightarrow \text{iv} \) : Suppose that \(G = 0, \forall \ p \in M. \) Then because of (2.11) we have \(a^j_{12} = 0, \ 1 \leq j \leq n-2. \) So \(\overline{D}_e \xi_j \) has no component in the direction \(e. \) Hence we observe that \(c_{2k} = 0, \ 3 \leq k \leq n, \) in the equation (2.13).

\(\text{iv} \Rightarrow \text{v} \) : Suppose that \(c_{2k} = 0, \ 3 \leq k \leq n, \) in the equation (2.13). That shows that \(\overline{D}_e \xi_j \) has no component in the direction \(e. \) Thus we have in the equation (2.1), \(a^j_{12} = 0, \ 1 \leq j \leq n-2. \)

Moreover, since \(a^j_{11} = \overline{D}_e \xi_j e \) and \(\langle \xi_j, D_e \rangle = 0 \) and because of the Weingarten equation we find

\[A_{e_j}(e) = 0, \ 1 \leq j \leq n-2. \]

\(\text{v} \Rightarrow \text{vi} \) : Let \(A_{e_j}(e) = 0. \) Then, from the Weingarten equation, we have \(a^j_{11} = 0, \ a^j_{12} = 0, \ 1 \leq j \leq n-2. \) Moreover, \(\langle e, e_j \rangle = 0 \) implies

\[\overline{D}_e e_j e = -\langle e_j, D_e e \rangle \] \hspace{1cm} (2.14)

If we se equations 2.1 and last equations we get

\[\overline{D}_e e_j e = -\langle e, D e_j e \rangle = -a^j_{12} \]

and

\[\overline{D}_e e_j e = 0. \]

From the last equation we have

\[\overline{D}_e e \in \chi(M). \]

\(\text{vi} \Rightarrow \text{i} \) : Let \(\overline{D}_e e \in \chi(M). \) Then from the equation (2.14), we get

\[\langle \overline{D}_e e, e_j \rangle = -a^j_{12} = 0, \ 1 \leq j \leq n-2. \] On the other hand, \(e[\langle e_j, e \rangle] = e \) \[1\] implies that \(\overline{D}_e e_j e = 0 \) and \(e[\langle e_j, e \rangle] = e[0] \) implies that \(\overline{D}_e e_j e = 0 \) (Since the generators are the geodesics of \(R^n, \) we have \(\overline{D}_e e = 0). \) Thus \(\overline{D}_e e_j \in \chi(M). \)
Because of (2.6) and since $a_{12}^j = 0, \ 1 \leq j \leq n-2$, we write that $\overline{D} e_1 = 0$.

This means that the tangent planes of M constant along the generator e of M, i.e. M is developable.

Corollary 2.5: Let M be a 2-dimensional space-like ruled surface in \mathbb{R}^n_1 with a Gauss curvature being zero. If M is minimal, then $c_{sk} = 0, \ 1 \leq s \leq 2, \ 3 \leq k \leq n$, in the (2.13).

Proof: Let M be minimal. Then from the equation (2.12) we have $V(e_1,e_1) = 0$. If this result is set in the Gauss equation, we find

$$\overline{D} e_1 = D e_1.$$

This means that $\overline{D} e_1$ has no component in $\chi^1(M)$. Therefore we have

$$C_{ik} = 0, \ 3 \leq k \leq n. \quad (2.15)$$

in the equation (2.13). On the other hand, since $G = 0$, by hypothesis, and from the Theorem 2.5 we know that $C_{2k} = 0, \ 3 \leq k \leq n$. If we consider this together with (2.15) we observe that $C_{sk} = 0, \ 1 \leq s \leq 2, \ 3 \leq k \leq n$.

REFERENCES

[4] THAS, C., Een (lokale) Studie van de (m+1)-dimensionale variëteten, van de n-dimensionale Euclidische Ruimte \mathbb{R} ($n \geq 2m+1$ en $m \geq 1$), Beschreven door een Eendimensionale Familie van m-dimensionale Lineaire Ruiten. Paleis Der Academien Hertogsstreet, I, Brussel, (1974).