SOME CONVOLUTION ALGEBRAS AND THEIR MULTIPLIERS

A. Turan GÜRKANLI

Department of Mathematics, Faculty of Art and Sciences, Ondokuz Mayis University, Samsun, TURKEY.

(Received Dec. 5, 1995; Revised March 25, 1997; Accepted August 11, 1997)

ABSTRACT

Let G be a locally compact Abelian group (nondiscrete and non compact) with dual group \hat{G}. For $1 \leq p < \infty$, $A_p(G)$ denotes the vector space of all complex-valued functions in $L^p(G)$ whose Fourier transforms \hat{f} belong to $L^p(\hat{G})$. Research on the spaces $A_p(G)$ was initiated by Warner [20] and Larsen, Liu and Wang [14]. Later several generalizations of these spaces to the weighted case was given by Gürkanlı [6], Feichtinger and Gürkanlı [4] and Fischer, Gürkanlı and Liu [5]. One of these generalization is the space $A_{p,\omega}(G)$, [4]. Also the multipliers of $A_p(G)$ were discussed in some papers such as [14], [1], [13], [3], [9] and proved that the space of multipliers of $A_p(G)$ is the space of all bounded complex-valued regular Borel measures on G.

In the present paper we discussed the multipliers of the Banach algebra $A_{p,\omega}(G)$ and proved that under certain conditions for given any multiplier T of $A_{p,\omega}(G)$ there exists a unique pseudo measure σ such that $Tf = \sigma \ast f$ for all $f \in A_{p,\omega}(G)$.

1. INTRODUCTION

Let G be a locally compact Abelian group with dual group \hat{G} and let dx and $d\hat{x}$ be Haar measures on these groups respectively. We denote by $K(G)$ the vector spaces of continuous functions on G with compact support and $K_c(G)$ the subclass of those functions in $K(G)$ whose supports are contained in C. For functions in $L^1(G)$ the Fourier Transform is denoted by \hat{f} or Ff. It is known that \hat{f} is continuous on \hat{G} which, vanish at infinity and the inequality $\|\hat{f}\|_\infty \leq \|f\|_1$ is satisfied ([16], 1.2.4. Theorem). We will denote the space of pseudo-measures by $A'(G)$, ([11], pp.97).

We set for $1 \leq p < \infty$,

$$L^p_w(G) = \left\{ f \mid f, w \in L^p(G) \right\},$$
where \(w \) is the Beurling's weight function on \(G \), i.e. \(w \) is a continuous function satisfying \(w(x) \geq 1 \) and \(w(x+y) \leq w(x) \cdot w(y) \) for all \(x, y \in G \). It is known that \(L^p_w(G) \) is a Banach space under the norm
\[
\| f \|_{p,w} = \left[\int_G |f(x)|^p \cdot w^p(x) \, dx \right]^{1/p}
\]
\(L^1_w(G) \) is called a Beurling algebra \([15]\). In some parts of the present paper it is used an extra condition on \(W \): A weight \(w \) is said to satisfy the Beurling-Domar condition (Shortly. (BD)) if one has
\[
\sum_{n \geq 1} n^{-2} \log (w(nx)) < \infty
\]
for all \(x \in G \), \([2]\).

It is known that regular maximal ideal space of \(L^1(G) \) can be identified with the space of all generalized characters \(\eta \) on \(G \) such that \(\eta \in L^\infty_{\omega}(G) \) and \(\eta \leq \omega(x1.a.e. \] \([19]\). If \(w \) satisfies the (B.D) condition the regular maximal ideal space of \(L^1(G) \) is equal to the dual group \(\hat{G} \). (c.g[2] pp.15 and Theorem 2.11).

Now we set
\[
\bigwedge^W_K(G) = \left\{ f \in L^1_w(G) \mid f \in K(\hat{G}) \right\},
\]
\[
\bigwedge^W_K(L(G)) = \left\{ f \in \bigwedge^W_K(G) \mid f \in K_L(\hat{G}) \right\}
\]
where \(\hat{L} \subset (\hat{G}) \). Again \(A^1(G) \) will denote the linear subspace of \(L^1(G) \) consisting of those \(f \in L^1(G) \) such that \(\hat{f} \in L^1(\hat{G}) \). It is known by the proof of ([11] Th. 6.2.2) that \(A^1(G) \subset A(G) \), where
\[
A(G) = \left\{ \hat{f} \mid f \in L^1(G) \right\}.
\]

Since \(\bigwedge^W_K(G) \subset A^1(G) \), then we have \(\bigwedge^W_K(G) \subset A^1(G) \subset A(G) \).

Again the Banach algebra \(A^p_{w,\omega}(G) \) is defined to be the set of functions \(f \in L^1_w(G) \) such that \(\hat{f} \in L^p_w(\hat{G}) \) with the norm
\[
\| f \|_{p,w,\omega} = \| f \|_{p,w} + \| \hat{f} \|_{p,\omega}, \quad 1 \leq p < \infty,
\]
where \(w \) and \(\omega \) are Beurling's weight functions on \(G \) and \(\hat{G} \), respectively \([4]\). It is known that if \(w \) satisfies (BD), then the regular maximal ideal
space of $L^1_w(G)$ is homeomorphic to the one of $A^p_{w,\infty}(G)$, ([5], Theorem 1.16). It is also known that if W satisfies (B.D) then the regular maximal ideal space of $L^1_w(G)$ is the dual group \hat{G} ([2], pp.15 and theorem 2.11). Then if W satisfies (BD), the regular maximal ideal of $A^p_{w,\infty}(G)$ is the dual space \hat{G}.

2. THE SPACES $E^W(G)$ AND THEIR PROPERTIES

Let G be a local compact abelian group, K and \hat{L} be the compact subsets of G and \hat{G}, respectively. We define the vector space $E^W_{K,\hat{L}}(G)$ as the space of all function u which can be represented as

$$u = \sum_{k=1}^{\infty} f_k * g_k , f_k \in K_k(G) , g_k \in L^1_w(G) , \hat{g}_k \in K_{\hat{L}}(\hat{G})$$

(1)

with

$$\sum_{k=1}^{\infty} \|f_k\|_\infty \cdot \|g_k\|_{L^1_w} < \infty$$

If one endows it with the norm

$$\|u\|_{E^W_{K,\hat{L}}(G)} = \inf \sum_{k=1}^{\infty} \|f_k\|_\infty \cdot \|g_k\|_{L^1_w} < \infty$$

then it is easy to see that $E^W_{K,\hat{L}}(G)$ becomes a Banach space under this norm, where the infimum is taken over all representations of u as an element $E^W_{K,\hat{L}}(G)$. The proof is similar to that of Guadry [4] and Larsen [5]). Now we define the vector space $E^W(G)$ to be

$$E^W(G) = \bigcup_{K,\hat{L}} E^W_{K,\hat{L}}(G)$$

(3)

together with the internal inductive limit topology of the Banach spaces $E^W_{K,\hat{L}}(G)$.

Proposition 2.1.

If w satisfies the (B.D) condition then to every compact subset $\hat{K} \subset \hat{G}$ there is a constant $C_K > 0$ such that for every $f \in A^p_{w,\infty}(G)$ whose Fourier transform vanishes outside of \hat{K} satisfies

$$\|f\|_{A^p_{w,\infty}} \leq C_K \cdot \|f\|_{L^1_w}$$

(1)

Proof. Since the (B.D) condition is satisfied, then for given any compact subset $\hat{K} \subset \hat{G}$ one can find a function $g \in A^p_{w,\infty}(G)$ such that
\(\hat{q}(x) = 1 \) for all \(x \in \hat{K} \). Take \(f \in A^p_{w,\omega}(G) \) satisfying \(\text{supp} \, \hat{F} \subset \hat{K} \). Hence we have \(f * g \in A^p_{w,\omega}(G) \) and
\[
\| f * g \|_{w,\omega}^p \lesssim \| f \|_{1,w} \cdot \| g \|_{w,\omega}^p
\]
(2)

because \(A^p_{w,\omega}(G) \) is a module over \(f \in L^1_w(G) \), ([3]). If we set \(C^p = \| g \|_{w,\omega}(G) \) then find
\[
\| f * g \|_{w,\omega}^p \lesssim C^p \cdot \| f \|_{1,w}.
\]
(3)

Because the hypothesis, \(\text{supp} \, \hat{F} \subset \hat{K} \) and \(\hat{g}(\hat{x}) = 1 \) over \(\hat{K} \), we write \(f * g = \hat{f} \cdot \hat{g} = \hat{f} \). Hence combining (2) and (3) we have
\[
\| f \|_{w,\omega}^p = \| f * g \|_{w,\omega}^p \lesssim C^p \cdot \| f \|_{1,w}.
\]
(4)

Lemma 2.2. If \(w \) satisfies the (B.D) condition, then the norms \(\| \| \|_{1,w} \) and \(\| \|_{w,\omega}^p \) are equivalent on \(W^{w}_{K,L}(G) \).

Proof. It is easy to see that \(W^{w}_{K,L}(G) \subset A^p_{w,\omega}(G) \) by the Theorem 4.2. in [2]. Let \(f \in W^{w}_{K,L}(G) \) be given. Since \(\text{supp} \, \hat{F} \subset \hat{K} \), by the proposition 2.1, one can find a constant \(C^p_L > 0 \) such that
\[
\| f \|_{w,\omega}^p \lesssim C^p_L \cdot \| f \|_{1,w}.
\]

It is also known that
\[
\| f \|_{1,w} \lesssim \| f \|_{w,\omega}^p.
\]

Therefore these two norms are equivalent on \(W^{w}_{K,L}(G) \).

Theorem 2.3. If \(w \) satisfies (B.D) then

1) \(E^W(G) \) is continuously embedded into \(A^p_{w,\omega}(G) \).

2) \(E^W(G) \) is everywhere dense in \(W^{w}_{K,L}(G) \) with respect to the norms \(\| \|_{1,w} \) and \(\| \|_{w,\omega}^p \).

3) \(E^W(G) \) is everywhere dense in \(A^p_{w,\omega}(G) \).

Proof.

1) Let \(u \in E^W(G) \). Then \(u \in E^W_{k,L}(G) \) for a pair \(K, \hat{L} \), where \(K \) and \(\hat{L} \) are compact subsets of \(G \) and \(\hat{G} \), respectively. Then \(u \) can be represent as
\[u = \sum_{k=1}^{\infty} f_k \ast g_k, f_k \in K_K(G), \hat{g} \in K_{\hat{L}}(\hat{G}), \]
with
\[\sum_{k=1}^{\infty} \| f_k \|_\infty \ast \| g_k \|_{1,w} < \infty \]
(1)

Since \(L^1_w(G) \) is a Banach convolution algebra then we write
\[\| u \|_{1,w} \leq \sum_{k=1}^{\infty} \| f_k \ast g_k \|_{1,w} \leq \sum_{k=1}^{\infty} \| f_k \|_{1,w} \cdot \| g_k \|_{1,w} \]
(2)

\[\leq M \cdot \sum_{k=1}^{\infty} \| f_k \|_{\infty} \cdot \| g_k \|_{1,w} \]
(3)

where \(M = \sup_{x \in K} |W(x)| \cdot \mu(K) \) and \(\mu(K) \) is the measure of \(K \). Also we have
\[\| \psi_{p,\omega} \|_{p,\omega} = \left(\int \left| \sum_{k=1}^{\infty} \hat{f}_k \cdot \hat{g}_k \right|_p \leq \sum_{k=1}^{\infty} \left(\int \| f_k(x) \cdot \hat{g}_k(x) \|^p \omega^p(x)dx \right)^{\frac{1}{p}} \]
(4)

\[\leq \sum_{k=1}^{\infty} \| f_k \|_{\infty} \cdot \| g_k \|_{1,w} \cdot \left(\int \omega^p(x)dx \right)^{\frac{1}{p}} \leq \sum_{k=1}^{\infty} \| f_k \ast g_k \|_{1,w} \cdot \left(\int \omega^p(x)dx \right)^{\frac{1}{p}} \]
(5)

\[\leq \sum_{k=1}^{\infty} \| f_k \|_{\infty} \cdot \| g_k \|_{1,w} \cdot \left(\int \omega^p(x)dx \right)^{\frac{1}{p}} \cdot \mu(K) = N \sum_{k=1}^{\infty} \| f_k \|_{\infty} \cdot \| g_k \|_{1,w} \]
(6)

where \(N = \left(\int \omega^p(x)dx \right)^{\frac{1}{p}} \cdot \mu(K) \)

If one uses (3) and (4) obtains that \(E^W(G) \subset A^p_{w,\omega}(G). \) Also by the Lemma 2.2 and (2), (4) the restriction of the identity map \(i \) from \(E^W(G) \) into \(A^p_{w,\omega}(G) \) to every subspace \(E^W_{K,\hat{L}}(G) \) is continuous. Hence \(i \) is a continuous embedding from \(E^W(G) \) into \(A^p_{w,\omega}(G). \)

2) It is easy to see the inclusion \(E^W(G) \subset \Lambda^W_K(G). \) For the proof of denseness of \(E^W(G) \) in \(\Lambda^W_K(G) \) with respect to the norm \(\| u \|_{1,w} \) take any function \(h \in \Lambda^W_K(G). \) Because the definition of \(\Lambda^W_K(G) \) there exists a compact subset \(\hat{L} \subset \hat{G} \) such that \(\hat{h} \in K_{\hat{L}}(\hat{G}). \) Since \(w \) has (B.D) condition then \(\Lambda^W_K(G) \subset A^p_{w,\omega}(G) \) has an approximate identity \((e_{r,\omega})_{r \in I} \) bounded in \(L^1_w(G) \) with compactly supported Fourier transforms [2]. \(L^1_w(G) \) also has another approximate identity \((u_{r,\beta})_{r \in I} \) with compactly supported [6]. Hence
\[h \ast e^{\alpha}_* u = u \ast h \ast e^{\beta}_* e^{\beta}_* E^W(G), \]
for all \(\beta \in J \) and
\[\| h \ast e^{\beta}_* u \ast h \|_{1,w} \leq \| h \ast e^{\alpha}_* u \ast h \ast e^{\alpha}_* e^\beta \|_{1,w} + \| h \ast e^{\alpha}_* h \|_{1,w} \rightarrow 0. \]

Also since by the Lemma 2.2, the norms \(\| \cdot \|_{1,w} \) and \(\| \cdot \|_{w,\omega}^p \) are equivalent on \(\wedge^W_{K,L}(G) \) for each pair \((K, L)\), then it is easy to see that \(E^W(G) \) is everywhere dense in \(\wedge^W_{K,L}(G) \) with respect to the norm \(\| \cdot \|_{w,\omega}^p \).

3) We know that \(A^p_{w,\omega}(G) \) has an approximate identity bounded in the norm \(L^1_w(G) \) ([2], Theorem 4.2). Using this approximate identity, a simple calculation shows that \(\wedge^W_{K,L}(G) \) is everywhere dense in \(A^p_{w,\omega}(G) \). If one combines this result with the first part of this theorem, observe that \(E^W(G) \) is everywhere dense in \(A^p_{w,\omega}(G) \).

Proposition 2.4. If \(1 \leq p < \infty \) then

1) \(L^1_w(G) \times L^p_{\omega}(\widehat{G}) \) is a Banach space with the norm
\[\| (f,g) \| = \| f \|_{1,w} + \| g \|_{p,\omega} \]
where \((f,g) \in L^1_w(G) \times L^p_{\omega}(\widehat{G}) \).

2) \(A^p_{w,\omega}(G) \) is a closed subspace of the space \(L^1_w(G) \times L^p_{\omega}(\widehat{G}) \).

3) Every bounded linear functional \(F \) on \(A^p_{w,\omega}(G) \) is represented by the formula
\[F(f) = \int_G f(x) \phi(x) dx + \int_G f(y) \psi(y) dy \]
where \(f \in A^p_{w,\omega}(G) \), \((\phi, \psi) \in L^\infty_w(G) \times L^q_{\omega}(\widehat{G}) \)
and \(\frac{1}{p} + \frac{1}{q} = 1 \).

Proof. The proof of (1) is easy. For the proof of (2), define function \(\phi_p(f) = (f, f) \) from \(A^p_{w,\omega}(G) \) into \(L^1_w(G) \times L^p_{\omega}(\widehat{G}) \). \(\phi_p \) is an isometry and \(A^p_{w,\omega}(G) \hookrightarrow L^1_w(G) \times L^p_{\omega}(\widehat{G}) \). This proves part (2).

Since \(\frac{1}{p} + \frac{1}{q} = 1 \), then the topological dual of \(L^1_w(G) \times L^p_{\omega}(\widehat{G}) \) is isomorphic to \(L^{\infty}_w(G) \times L^{\infty}_{\omega}(\widehat{G}) \) and every continuous linear functional on \(L^1_w(G) \times L^p_{\omega}(\widehat{G}) \) is represented by
CONVOLUTION ALGEBRAS

\(F(f) = \int_G f(x) \phi(x) dx + \int_{\hat{G}} \hat{f}(y) \psi(y) dy \) (1)

\((\phi, \psi) \in L_{w}^{\infty}(G) \times L_{q}^{\infty}(\hat{G}).\) Because the fact (2) and by the Hahn Banach theorem, every continuous linear functional on \(A_{w,\infty}^{p}(G)\) is also represented by the formula (1).

Proposition 2.5. If \(\gamma \in (A_{w,\infty}^{p}(G))^{'}\) and \(f, g \in A_{w,\infty}^{p}(G)\), then we have

\[\langle f * g, \gamma \rangle = \int_G f(y) \cdot \langle \tau_y g, \gamma \rangle dy , \]

where \(\tau_y\) is the translation operator defined by \(\tau_y g(x) = g(x-y)\).

Proof. By the proposition 2.4. we write

\[\langle \hat{f} \hat{*} \hat{g}, \gamma \rangle = \int_G \langle \hat{f} \hat{*} g, \phi \rangle dx = \int_G \langle \hat{f} \hat{g}, \psi \rangle dx, \] (1)

where \((\phi, \psi) \in L_{w}^{\infty}(G) \times L_{q}^{\infty}(\hat{G})\) and \(\frac{1}{p} + \frac{1}{q} = 1\). A simple calculation shows that

\[\int_G \langle \hat{f} \hat{g}, \phi \rangle dx = \int_G f(y) \langle \tau_y g, \phi \rangle dy \] (2)

and

\[\int_G \langle \hat{f} \hat{g}, \psi \rangle dx = \int_G f(t) \langle \tau_t g, \psi \rangle dy \] (3)

If one combines these results obtains

\[\langle \hat{f} \hat{*} \hat{g}, \gamma \rangle = \int_G f(t) \langle \tau_t g, \phi \rangle dt + \int_G f(t) \langle \tau_t g, \psi \rangle dt = \int_G f(t) \langle \tau_t g, \phi \rangle dt + \int_G f(t) \langle \tau_t g, \psi \rangle dt = \int_G f(t) \langle \tau_t g, \gamma \rangle dt. \]

Proposition 2.6. Let \(h \in \bigwedge_{w}^{K}(G)\). If \(w\) is symmetric and \(u \in E_{w}^{w}(G)\), then \(u \rightarrow \tilde{h} * u\) is a continuous function from \(E_{w}^{w}(G)\) into \(E_{w}^{w}(G)\), where

\(\tilde{h}(x) = h(-x)\).

Proof. Let \(u \in E_{w}^{w}(G)\). There is a pair \((K, \hat{L})\) such that \(f_k \in K_{K}(G)\), \(\hat{g}_k \in K_{\hat{L}}(\hat{G})\),

\[u = \sum_{k=1}^{\infty} f_k * g_k \quad \text{and} \quad \sum_{k=1}^{\infty} \|f_k\|_{1,w} \cdot \|g_k\|_{1,w} < \infty . \] (1)

Since \(\tilde{h}, f_k \in L_{w}^{w}(G)\) then we have
\[
\tilde{h} \ast u = \sum_{k=1}^{\infty} f^*_{k} \ast (\tilde{h} \ast g_{k})
\]
and
\[
\sum_{k=1}^{\infty} \|f^*_{k}\|_{\infty} \|\tilde{h} \ast g_{k}\|_{1,w} \leq \|\tilde{h}\|_{1,w} \sum_{k=1}^{\infty} \|f^*_{k}\|_{\infty} \cdot \|g_{k}\|_{1,w} < \infty
\] \(2\)

Hence \(\tilde{h} \ast u \in E^W(G)\). For the continuity, it is enough to show the restriction of the mapping \(u \rightarrow \tilde{h} \ast u\) to each \(E^W_{K,L}(G)\) is continuous. But this is immediate because if \(u_n - u_{K,L}^\wedge \rightarrow 0\) then we have
\[
\|\tilde{h} \ast u_n - \tilde{h} \ast u_{K,L}^\wedge\|_{1,w} \leq \|\tilde{h}\|_{1,w} \cdot \|u_n - u_{K,L}^\wedge\| \rightarrow 0.
\] \(3\)

The proof of the following proposition is clear because of the Theorem 2.3. and Proposition 2.1.

Proposition 2.7. If \(w\) satisfies the (B.D) then we have \((A^p_{w,\omega}(G))' \subset (E^w(G))'\), where \((A^p_{w,\omega}(G))'\) and \((E^w(G))'\) are topological duals of \(A^p_{w,\omega}(G)\) and \(E^w(G)\) respectively.

Definition 2.8. Let \(f \in A^w_{K}(G), \sigma \in (E^w(G))'\) and \(w\) be a symmetric Beurling's weight. We are going to define the convolution \(\sigma \ast f\) to be
\[
\langle u, \sigma \ast f \rangle = \langle f \ast u, \sigma \rangle
\] \(1\)

where \(u \in E^w(G)\). It is easily seen that \(1\) is well defined because the Proposition 2.6.

Let \(w\) be a symmetric weight and \(u \in (E^w(G))'\). Then the linear fractional \(\tilde{u} \in (E^w(G))^\prime\) is defined to be \(\langle u, \tilde{u} \rangle = \langle \tilde{u}, u \rangle\) for all \(u \in E^w(G)\).

3. Multipliers on the Space \(A^p_{w,\omega}(G)\).

Definition 3.1. A multipliers on \(A^p_{w,\omega}(G)\) is a bounded linear operator \(T\) on \(A^p_{w,\omega}(G)\) which commutes with translation operators, that is \(T\tau_s = \tau_s T\) for each \(s \in G\). The space of all multipliers on \(A^p_{w,\omega}(G)\) will be denoted by \(M(A^p_{w,\omega}(G))\).

Proposition 3.1. If \(T \in M(A^p_{w,\omega}(G))\), then \(T(f \ast g) = Tf \ast g\) for all \(f, g \in A^p_{w,\omega}(G)\).
Proof. Take any $T \in M(A^p_{w,\omega}(G))$, $f \in A^p_{w,\omega}(G)$ and $\gamma \in (A^p_{w,\omega}(G))^\prime$. It is easy to prove that the map $f \rightarrow \langle Tf, \gamma \rangle$ is a continuous linear functional on $A^p_{w,\omega}(G)$. Then there exists $\psi \in (A^p_{w,\omega}(G))^\prime$ such that $\langle f, \psi \rangle = \langle Tf, \gamma \rangle$ for all $f \in A^p_{w,\omega}(G)$. By the Proposition 2.5. one can write
\[
\langle Tf^g, \psi \rangle = \int_g (g(y)^{(T_y f, \gamma)} dy = \int_g (T_y f, \psi)^{y} dy = \langle f^g, \psi \rangle = \langle T(f^g), \gamma \rangle.
\]
Using the Hahn Banach theorem we obtain $Tf^g = T(f^g)$ for every $f, g \in A^p_{w,\omega}(G)$.

Theorem 3.2. Let w be a symmetric weight on G satisfying (B.D). If $T \in M(A^p_{w,\omega}(G))$, then there exists a unique continuous linear functional $\sigma \in (E^W(G))^\prime$ such that $Tf = \sigma \ast f$ for all $f \in \wedge_k(G)$.

Proof. If $u \in E^W_{k,l}(G)$ then one writes
\[
u = \sum_{k=1}^\infty f_k \ast g_k
\]
for some $f_k \in K_k(G)$ and $g_k \in L^1_w(G)$ satisfying $\hat{g}_k \in K^\wedge(G)$. By the Proposition 2.1. we have
\[
| (f_k \ast \mathcal{T}_k)(0) | \leq \| f_k \|_{\infty} \cdot \| \mathcal{T}_k \|_1 \leq \| f_k \|_{\infty} \cdot \| \mathcal{T}_k \|_{w,\omega}^p \leq C_{L^1} \cdot \| T \| \| f_k \|_{\infty} \cdot \| g_k \|_{1,w}.
\]
Hence the series
\[
\sum_{k=1}^\infty f_k \ast \mathcal{T}_k(0),
\]
converges uniformly. If we set
\[
u(u) = \sum_{k=1}^\infty f_k \ast \mathcal{T}_k(0),
\]
then it is easy to see that ν is well defined in the following means: If
\[
\sum_{k=1}^\infty f_k \ast g_k
\]
is a representation of 0 as an element of $E^W_{k,l}(G)$ then
\[\sum_{k=1}^{\infty} f_k \ast Tg_k(0) = 0 \]

Using the formula (2) one obtains

\[|u(u)| \leq C_L \|T\| \cdot |u|_{K,L} \]

for all \(u \in \mathcal{W}_k\). Therefore \(u \in (\mathcal{W}_k)' \). Hence we have \(\langle u, \tilde{u} \ast f \rangle = \langle \tilde{f} \ast u, \tilde{u} \rangle = \langle \tilde{u} \ast T f(0), \tilde{u} \rangle = \langle u, T f \rangle \) for all \(u \in \mathcal{W}_k \) and \(f \in \mathcal{W}_k \). That means \(T f = \tilde{u} \ast f \) for each \(f \in \mathcal{W}_k \). We set \(\sigma = \tilde{u} \).

Also since \(w \) satisfies (B.D), then there is a bounded approximate identity \((e_\alpha) \) in \(L^1_w(G) \) ([2] Th. 4.2.). Let

\[h = \sum_{k=1}^{\infty} f_k \ast g_k \in \mathcal{W}_k \]

be given. Then there exists a pair \((K, \hat{L}) \) such that \(h \in \mathcal{W}_k \). Since

\[|e_\alpha \ast g_k - g_k|_{L_1,w} \to 0, \]

using the equality

\[|e_\alpha \ast h - h|_{K,L} = |\sum_{k=1}^{\infty} f_k \ast [g_k - g_k]|_{K,L} \]

\[= \inf \sum |f|_{L_\infty} \cdot |e_\alpha \ast g_k - g_k|_{L_1,w}. \]

one easily shows that the set

\[\left\{ f \ast h f \in \mathcal{W}_k(G), h \in \mathcal{W}_k(G) \right\} \]

is dense in \(\mathcal{W}_k(G) \).

Assume that \(s \) is not unique. Then there exists \(\sigma, \sigma' \in (\mathcal{W}_k(G))' \) such that \(T f = \sigma \ast f = \sigma' \ast f \). Hence we have \(\langle f \ast h, \sigma \rangle = \langle f \ast h, \sigma' \rangle \) for all \(f \in \mathcal{W}_k(G) \) and \(h \in \mathcal{W}_k(G) \). Using the denseness of (3) in \(\mathcal{W}_k(G) \) one obtains that \(\sigma = \sigma' \). That means \(\sigma \) is unique.

We denote by \(A^\omega \) the Banach algebra \(\{L^1_\omega(G)\} \) with its natural norm \(\|f\|_1^{\omega} \) [12].

Proposition 3.3. If \(w \) and \(\omega \) satisfy (B.D) then \(\mathcal{W}_k(G) \) is dense in \(A^\omega(G) \).
Proof. Since \(\omega \) satisfies (B.D) then \(\left(L_1^w(G)\right) \) has a bounded Approximate identity \(\left(u_j\right)_{j \in J} \) (shortly BAI) whose Fourier transforms have compact support ([3], Th. 4.2.). So, it is easily proved that the set \(A^\omega_c(G) = A^\omega(G) \cap K(G) \) is dense in \(A^\omega(G) \). Since \(W \) satisfies (B.D) then \(L^1_w(G) \) also has a BAI \(\left(e_\alpha\right)_{\alpha \in I} \) whose Fourier transforms have compact support. Suppose \(\hat{f} \in A^\omega_c(G) \). Then \(\left(e_\alpha * \hat{f}\right) \subset \Lambda^w(K) \) for all \(\alpha \in I \). Again because the regularity of \(\hat{f} \), given any compact subset \(K_0 \subset \hat{G} \) there exists \(g \in \Lambda^w(K) \) such that \(\hat{g}(x) = 1 \) for all \(x \in K_0 \). Therefore we obtain

\[
\left\| e_\alpha - 1 \right\|_{L^1_{1,\omega}} = \sup_{x \in K_0} \left| \hat{e}_\alpha(x) - 1 \right| \leq \left\| \hat{f} \right\|_{1,\omega} \rightarrow 0.
\]

(1)

we let \(C_0 = C + 1 \) where \(\left\| e_\alpha \right\| \leq C \), for all \(\alpha \in I \). Since \(\hat{f} \in A^\omega_c(G) \), then given \(\varepsilon > 0 \) there exists a compact subset \(K \subset \hat{G} \) such that

\[
\frac{1}{\hat{G}} \int_{\hat{G}} |f(x)| \omega(x) \, dx < \frac{\varepsilon}{2C_0}.
\]

(2)

Moreover, because the formula (1) there exists an \(\alpha_0 \in I \) such that if \(\alpha > \alpha_0 \) then

\[
\left\| e_\alpha - 1 \right\|_{L^1_{1,\omega}} = \sup_{x \in K} \left| \hat{e}_\alpha(x) - 1 \right| < \frac{\varepsilon}{2\left\| f \right\|_{1,\omega}}.
\]

(3)

Using (2) and (3) we have

\[
\left\| \hat{f} - e_\alpha * \hat{f} \right\|_{L^1_{1,\omega}} = \left\| f - e_\alpha * f \right\|_{1,\omega}
\]

\[
= \int_{\hat{G}} \left| f(x) - e_\alpha(x)f(x) \right| \omega(x) \, dx + \int_{K} \left| f(x) - e_\alpha(x)f(x) \right| \omega(x) \, dx
\]

\[
\leq \left(1 + \left\| e_\alpha \right\|_{\infty} \right) \int_{\hat{G}} |f(x)| \omega(x) \, dx + \left\| f \right\|_{1,\omega} \left\| 1 - e_\alpha \right\|_{L^1_{1,\omega}}
\]

\[
\leq (1 + C) \int_{\hat{G}} |f(x)| \omega(x) \, dx + \left\| f \right\|_{1,\omega} \left\| 1 - e_\alpha \right\|_{L^1_{1,\omega}}
\]

\[
\leq C_0 \cdot \frac{\varepsilon}{2C_0} + \frac{\varepsilon}{2\left\| f \right\|_{1,\omega}} \cdot \left\| f \right\|_{1,\omega} = \varepsilon.
\]

Since \(A^\omega_c(G) \) is dense in \(A^\omega(G) \), then given any \(\hat{g} \in A^\omega(G) \) one can find \(f \in A^\omega_c(G) \) such that \(\left\| \hat{f} - \hat{g} \right\| < \varepsilon \). Then

\[
\left\| \hat{g} - e_\alpha * \hat{f} \right\|_{L^1_{1,\omega}} \leq \left\| \hat{g} - \hat{f} \right\|_{L^1_{1,\omega}} + \left\| \hat{f} - e_\alpha * \hat{f} \right\|_{L^1_{1,\omega}} < 2\varepsilon
\]

(4)

for all \(\alpha \geq \alpha \). This completes the proof.
Corollary 3.4. If \(w \) and \(\omega \) satisfy the conditions in Proposition 3.3, then \(\sigma^w_\infty(G) \) is dense in \(A(G) \).

Proof. Suppose \(\hat{g} \in A(G) \). Since \(K(G) \) is everywhere dense in \(L^1(G) \), then given any \(\varepsilon > 0 \) there exists \(h \in K(G) \subset L^1(G) \) such that
\[
\| g - h \|_A < \frac{\varepsilon}{2}.
\]
Hence by the Proposition 3.3, one can find \(\hat{k} \in \sigma^w_\infty(G) \) such that
\[
\| k - h \|_A < \frac{\varepsilon}{2}.
\]
Combining (1) and (2) we have
\[
\| \hat{g} - k \|_A < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]
This proves our Corollary.

Now we recall that \(A(G) \) is a Banach algebra under pointwise multiplication operation with the norm \(\| f \|_A = \| f \|_1 \). Every continuous linear functional on \(A(G) \) is called a pseudomeasure.

Proposition 3.5. If \(A'(G) \) denotes the algebra of all pseudomeasures on \(G \), then \(A'(G) \subset (E^w(G))^\prime \).

Proof. Suppose that \(u \in E^w(G) \). Then there exists a pair \((K, \hat{L})\) of compact sets such that \(u \in E_{K,\hat{L}}(G) \). We also have
\[
\| u \|_A = \left\| \sum_{k=1}^{\infty} f_k \ast g_k \right\|_A \leq \sum_{k=1}^{\infty} \| f_k \ast g_k \|_A = \sum_{k=1}^{\infty} \left\| \hat{f}_k \ast \hat{g}_k \right\|_1 = \sum_{k=1}^{\infty} \left\| \hat{f}_k \right\|_1 \cdot \left\| \hat{g}_k \right\|_1.
\]
If one combines the inequality
\[
\| \hat{g}_1 \|_1 \leq \| \hat{g}_1 \|_1 \cdot \mu(K)
\]
with (1), obtains
\[
\| u \|_A \leq \sum_{k=1}^{\infty} \| f_k \|_1 \cdot \left\| \hat{g}_k \right\|_1 \cdot \mu(L) \cdot \mu(K)
\]
\[
\leq \sum_{k=1}^{\infty} \| f_k \|_1 \cdot \| g_k \|_1 \cdot \mu(L) \cdot \mu(K) \leq \sum_{k=1}^{\infty} \| f_k \|_1 \cdot \| g_k \|_1 \cdot \mu(L) \cdot \mu(K) < \infty.
\]
That means \(E^w(G) \subset A(G) \). Now if \(\sigma \in A'(G) \) and \(u \in E^w_{K,\hat{L}}(G) \) then we have
\[
\| u \|_A \leq \| \sigma \|_A \leq \| \sigma \| \cdot \sum_{k=1}^{\infty} \| f_k \|_1 \cdot \| g_k \|_1 \cdot \mu(L) \cdot \mu(K).
\]
Therefore
\[|u, \sigma| \leq |\sigma| \cdot |u|_{k,L}^W \mu(L) \mu(K) \]

Since \(\sigma \) is continuous on every \(E^W_{k,L}(G) \) then \(\sigma \in (E^W(G)) \). This completes the proof.

Theorem 3.6. Assume that \(w \) and \(\omega \) satisfy (B.D) and \(W \) is symmetric. If \(T \in M(A^p_{w,\omega}(G)) \), then there exists a unique pseudo-measure \(\sigma \in A'(G) \) such that \(Tf = \sigma \ast f \) for all \(f \in A^p_{w,\omega}(G) \).

Proof. Suppose that \(T \in M(A^p_{w,\omega}(G)) \). By the proposition 3.1, we have \(T(f \ast g) = Tf \ast g \) for all \(f, g \in A^p_{w,\omega}(G) \), since \(A^p_{w,\omega}(G) \) is commutative it is easy to see that \(Tf \ast g = f \ast Tg \) for all \(f, g \in A^p_{w,\omega}(G) \). Then we write \((Tf) \circ \hat{g} = \hat{f} \circ (Tg) \). Since \(W \) satisfies (B.D) then \(A^p_{w,\omega}(G) \) has approximate identities ([4], Theorem 4.2). Also it is known that \(A^p_{w,\omega}(G) \) is a Banach convolution algebra ([4], Theorem 2.1). Hence \(A^p_{w,\omega}(G) \) is a commutative Banach algebra without order (i.e if for all \(f \in A^p_{w,\omega}(G) \), \(f \ast A^p_{w,\omega}(G) = 0 \) then \(f = 0 \)). Again since \(W \) satisfies (B.D) then the regular maximal ideal space of \(L^1_w(G) \) is the dual group \(\hat{G} \) ([2], pp.15 and Theorem 2.11). It is also known that in the case \(W \) satisfies (B.D) condition the regular maximal ideal space of \(L^1_w(G) \) is homeomorphic to the one of \(A^p_{w,\omega}(G) \), ([5], Th. 1.16), which implies that the regular maximal ideal space of \(A^p_{w,\omega}(G) \) is the dual space \(\hat{G} \). Then there exists a unique bounded continuous function \(\Phi \) on \(\hat{G} \) such that \((Tf) \circ \hat{g} = \Phi(y) \circ \hat{g}(y) \) for all \(g \in A^p_{w,\omega}(G) \) by the Theorem 1.2.2. in [11]. If \(f \in \wedge^W_K(G) \) then \(Tf \in L^1_w(G) \) and \((Tf) \circ \hat{g} = \Phi \circ \hat{g} \in \hat{K}(G) \). Therefore \(\wedge^W_K(G) \) is invariant under \(T \). Since every element of \(\wedge^W_K(G) \) is continuous (see introduction) then we can define a linear functional on \(\wedge^W_K(G) \) as \(L(f) = Tf(0) \) for all \(f \in \wedge^W_K(G) \). Also we write,

\[|L(f)| = |Tf(0)| \leq \| Tf \|_{w} \tag{1} \]

Since \(Tf \in \wedge^W_K(G) \subset A(G) \) then there exists \(g \in L^1(G) \) such that \(\hat{g} = Tf \). If one uses the inequalities \(\hat{g} = \tilde{g} \) and \(||\tilde{g}||_1 = ||\hat{g}||_1 \) writes

\[||\tilde{g}||_1 = ||\hat{g}||_1 = ||\hat{g}||_1 \tag{2} \]
where \(\hat{g}(x) = g(-x) \). Now if we combine (1) and (2) obtain

\[
|L(f)| \leq \|Tf\|_\infty = \|\hat{\Phi} \hat{f}\|_\infty \leq \|\Phi\|_1 \cdot \|f\|_1 = \|\Phi\|_\infty \cdot \|\hat{\Phi}\|_1 = \|\Phi\|_\infty \cdot \|f\|_A.
\]

(3)

Thus \(L \) is a continuous linear functional on \(\Lambda^W_K(G) \). Since \(\Lambda^W_K(G) \) is dense in \(A(G) \) by the Corollary 3.4., then \(L \) can be extended uniquely as a continuos linear functional on \(A(G) \). Hence there exists a unique pseudo-measure \(\sigma \) such that

\[
L(f) = Tf(0) = \langle f, \sigma \rangle
\]

(4)

for all \(f \in \Lambda^W_K(G) \). Then \(Tf = \sigma * f \) for all \(f \in \Lambda^W_K(G) \). An examination proof of Theorem 3.2 and proposition 3.5 show that \(\sigma \) is a pseudo measure and is unique. Hence to complete the proof of this theorem it remains to show that \(Tf = \sigma * f \) holds for all \(f \in A^p_{w,\omega}(G) \). Let \(f \) be any element of \(A^p_{w,\omega}(G) \). If \((e_{\alpha})_{\alpha \in I} \) is a bounded approximate identity for \(A^p_{w,\omega}(G) \) chosen from \(\Lambda^W_K(G) \) ([4], Th. 4.2) then for each \(f \in A^p_{w,\omega}(G) \) the net \((e_{\alpha} * f) \) is Cauchy net in \(\Lambda^W_K(G) \) and since \(T(e_{\alpha} * f) = \sigma * (e_{\alpha} * f) \), we have

\[
|\sigma * (e_{\alpha} * f) - \sigma * (e_{\beta} * f)|_{W,\omega}^p
\leq \|T(e_{\alpha} * f) - T(e_{\beta} * f)|_{W,\omega}^p \leq \|e_{\alpha} * f - e_{\beta} * f||_{W,\omega}^p
\]

(5)

which implies that \((\sigma * (e_{\alpha} * f))_{\alpha \in I} \) is a Cauchy net in \(A^p_{w,\omega}(G) \) and converges to a function \(F \in A^p_{w,\omega}(G) \). That means

\[
|F - \sigma * (e_{\alpha} * f)|_{W,\omega}^p \to 0.
\]

(6)

Again it is clear that \(\sigma * f \in A'(G) \) because \(f \in L^1(G) \) and \(\sigma \in A'(G) \).

If we use (6) and the relation

\[
\|\hat{F} - \hat{\sigma}\|_\infty \leq \|\hat{F} - \hat{\sigma} \hat{\sigma}^{\hat{\alpha}} \|_\infty + \|\hat{\sigma} \hat{\sigma}^{\hat{\alpha}} - \hat{\sigma}\|_\infty
\leq \|F - \sigma * (e_{\alpha} * f)\|_1 + \|\sigma^{\hat{\alpha}}\|_1 \cdot |e_{\alpha} * f - f|_1
\leq \|F - \sigma * (e_{\alpha} * f)\|_{W,\omega}^p + \|\sigma\|_{W,\omega} \cdot |e_{\sigma} * f - f|_{W,\omega}^p
\]

(7)
find that $\hat{F} = \hat{\sigma} \cdot \hat{f}$. From the inversion theorem we write $F = \sigma \ast f$. Also we have

$$\| T\hat{f} - \sigma \ast (e_\alpha \ast f) \|_{L^p_{w,0}} = \| T\hat{f} - T(e_\alpha \ast f) \|_{L^p_{w,0}}$$

$$\leq \| \hat{f} - e_\alpha \ast d_{w,0}^p \| \rightarrow 0.$$ \hspace{1cm} (8)

Consequently it follows from (6), (7) and (8) that $Tf = F = \sigma \ast f$ for all $f \in A^p_{w,0}(G)$. This completes the proof.

ACKNOWLEDGEMENT

The author wants to thank H.G. Feichtinger for his significant suggestions in the original version of this paper.

REFERENCES

