ON THE GEOMETRY OF TIME-LIKE SURFACES

H. HÜSEYİN UĞURLU

Department of Mathematics, Faculty of Arts and Sciences, Celal Bayar University, 45040 Manisa, TURKEY.

(Received Dec. 3, 1996; Revised March 25, 1997; Accepted April 10, 1997)

ABSTRACT

The formulae for a time-like surface, given by Enneper, O. Bonnet, Euler and Liouville, were obtained by using the hyperbolic angle between time-like curves on the surface.

1. INTRODUCTION

In the Euclidean 3-space E^3, let us denote the tangent unit vectors of the parameter curves (c_1), (c_2) and an arbitrary curve (c) passing through a point P on the differentiable surface $x(u,v)$ as t_1, t_2 and t, respectively. Let φ be the angle between t_1 and t, R_1 and R_2 the principal curvature radii of (c_1) and (c_2). If R_n and T_g are the normal curvature and geodesic torsion radii corresponding to direction t then we can write

$$\frac{\cos \varphi}{R_1} = \frac{\cos \varphi}{R_n} - \frac{\sin \varphi}{T_g}.$$
$$\frac{\sin \varphi}{R_2} = \frac{\sin \varphi}{R_n} + \frac{\cos \varphi}{T_g}.$$

(1)

Now, Let us consider the Minkowski 3-space R_1^3 provided with Lorentzian inner product

$$\langle a, b \rangle = a_1 b_1 + a_2 b_2 - a_3 b_3$$

where $a = (a_1, a_2, a_3)$, $b = (b_1, b_2, b_3) \in R^3$. In this space, a vector a is said to be space-like if $\langle a, a \rangle > 0$, time-like if $\langle a, a \rangle < 0$, and light-like (or null) if $\langle a, a \rangle = 0$. The norm of a vector a is defined to be $|a| = \sqrt{|\langle a, a \rangle|}$ [2].
Let \(y(u,v) \) be a surface in the space \(\mathbb{R}^3 \). If for each \(P \in y(u,v) \) the induced metric \(\langle \ , \ \rangle_{T_y x T_y} \) is Lorentzian then \(y(u,v) \) is called time-like surface. The Darboux instantaneous rotation vector of space-like and time-like curves on the time-like surface \(y(u,v) \) were stated in [3]. By using this vectors, we give:

Fundamental theorem. Let us denote tangent unit vectors of time-like and space-like parameter curves \((c_1) \) and \((c_2) \) perpendicular to each other, and an arbitrary time-like curve \((c) \) passing through a point \(P \) on the time-like surface \(y(u,v) \) as \(t_1, \ t_2 \) and \(t \), respectively. Let \(\theta \) be the hyperolic angle between \(t_1 \) and \(t \), and also \(R_1, \ R_2 \) the principal curvature radii. If \(R_n \) and \(T_g \) are the normal curvature and geodesic torsion radii corresponding to direction \(t \), then we can write

\[
\begin{align*}
\cosh \theta &= \frac{\cosh \theta - \sinh \theta}{R_1} + \frac{\sinh \theta}{R_n} + \frac{\cosh \theta}{T_g}, \\
\sinh \theta &= \frac{\sinh \theta - \cosh \theta}{R_2} + \frac{\cosh \theta}{R_n} + \frac{\sinh \theta}{T_g}.
\end{align*}
\] (1.1)

2. **THE INSTANTANEOUS ROTATION VECTORS OF SPACE-LIKE AND TIME-LIKE CURVES**

a) **The Frenet instantaneous rotation vector**

i) Let \(c = c(s) \) be a space-like space curve. At every point on this curve, there exist the Frenet trihedron \([t,n,b] \), here \(t, n \) and \(b \) are tangent, principal normal and binormal unit vectors of curve, respectively. In this trihedron, we assume that \(t \) and \(n \) are space-like vectors and \(b \) is time-like vector. That is we have

\[
\langle t, t \rangle = \langle n, n \rangle = 1, \ \langle b, b \rangle = -1
\]

\[
\langle t, n \rangle = \langle n, b \rangle = \langle b, t \rangle = 0.
\]

Furthermore, for this vectors we write

\[
t \wedge n = b, \ n \wedge b = -t, \ b \wedge t = -n,
\]

where \(\wedge \) is the Lorentzian cross product [4] in space \(\mathbb{R}^3 \). In this situation, the Frenet formulae are given by
\[
\begin{align*}
\frac{dt}{ds} &= \frac{1}{R} n \\
\frac{dn}{ds} &= -\frac{1}{R} t + \frac{1}{T} b \\
\frac{db}{ds} &= \frac{1}{T} n,
\end{align*}
\]
(2.1)

where \(R \) and \(T \) are the radii of curvature and torsion of the space-like curve (c), respectively. By (2.1) the Frenet instantaneous rotation vector is given by

\[
f = \frac{1}{T} t - \frac{1}{R} b.
\]
(2.2)

ii) In the trihedron \([t,n,b]\), let \(n \) be time-like vector. Thus, the Frenet formulae for the curve (c) are given by

\[
\begin{align*}
\frac{dt}{ds} &= \frac{1}{R} n \\
\frac{dn}{ds} &= \frac{1}{R} t + \frac{1}{T} b \\
\frac{db}{ds} &= \frac{1}{T} n.
\end{align*}
\]
(2.3)

By (2.3) the Frenet instantaneous rotation vector for the space-like curve (c) can be written as follows:

\[
f = -\frac{1}{T} t + \frac{1}{R} b.
\]
(2.4)

The Frenet derivative formulae (2.3) can be given with the vector (2.4) as follows:

\[
\begin{align*}
\frac{dt}{ds} &= f \wedge t \\
\frac{dn}{ds} &= f \wedge n \\
\frac{db}{ds} &= f \wedge b.
\end{align*}
\]
(2.5)

iii) Let (c) be a time-like curve. Then, the Frenet formulae are given by

\[
\begin{align*}
\frac{dt}{ds} &= \frac{1}{R} n \\
\frac{dn}{ds} &= \frac{1}{R} t - \frac{1}{T} b \\
\frac{db}{ds} &= \frac{1}{T} n.
\end{align*}
\]
(2.6)
By (2.6), the Frenet instantaneous rotation vector of the time-like curve (c) can be written by

$$f = \frac{1}{T} \mathbf{t} - \frac{1}{R} \mathbf{b} .$$ \hspace{1cm} (2.7)

b) The Darboux instantaneous rotation vector

i) let us consider the time-like surface \(y(u,v) \). At every point of a time-like curve (c) on this surface there exists a Frenet trihedron \([t,n,b]\). Since the curve (c) is on the surface, another trihedron can be mentioned. Let us denote the tangent unit vector of the curve (c) as \(\mathbf{t} \) and the space-like normal unit vector of the surface at the point \(P \) as \(\mathbf{N} \). In this case, if we consider a space-like vector \(\mathbf{g} \), which is defined as \(\mathbf{t} \wedge \mathbf{N} = \mathbf{g} \), we obtain the Darboux trihedron \([\mathbf{t},\mathbf{g},\mathbf{N}]\). To compare this trihedron with the Frenet trihedron, let us denote the angle between the vectors \(\mathbf{n} \) and \(\mathbf{N} \) as \(\phi \). In this situation, we can write

$$\mathbf{g} = \mathbf{n} \sin \phi - \mathbf{b} \cos \phi ,$$

$$\mathbf{N} = \mathbf{n} \cos \phi + \mathbf{b} \sin \phi .$$ \hspace{1cm} (2.8)

Differentiating the vectors \(\mathbf{t} \), \(\mathbf{N} \) and \(\mathbf{g} \), with respect to arc \(s \) of the curve (c) we obtain the formulae

$$\frac{dt}{ds} = \rho \sin \phi \mathbf{g} + \rho \cos \phi \mathbf{N}$$

$$\frac{dg}{ds} = \rho \sin \phi \mathbf{t} - \left(\tau - \frac{d\phi}{ds} \right) \mathbf{N}$$

$$\frac{dN}{ds} = \rho \cos \phi \mathbf{t} + \left(\tau - \frac{d\phi}{ds} \right) \mathbf{g} .$$ \hspace{1cm} (2.9)

Here, if we say

$$\rho \cos \phi = \frac{\cos \phi}{R} = \frac{1}{R_n} = \rho_n$$

$$\rho \sin \phi = \frac{\sin \phi}{R} = \frac{1}{R_g} = \rho_g$$

$$\tau - \frac{d\phi}{ds} = \frac{1}{T} - \frac{d\phi}{ds} = \frac{1}{T_g} = \tau_g$$

the formulae (2.9) can be written as follows:
\[\frac{dt}{ds} = \rho g + \rho_n N \]
\[\frac{dg}{ds} = \rho g t - \tau_g N \]
\[\frac{dN}{ds} = \rho_n t + \tau_g g , \]

where \(\rho_n \) is the normal curvature, \(\rho_g \) is the geodesic curvature and \(\tau_g \) is the geodesic torsion.

For this, the Darboux instantaneous rotation vector of the Darboux trihedron can be written as below:
\[w = \frac{t}{T_g} + \frac{g}{R_n} - \frac{N}{R_g} . \]

According to this, the Darboux derivative formulae are written as follows:
\[\frac{dt}{ds} = w \wedge t , \frac{dg}{ds} = w \wedge g , \frac{dN}{ds} = w \wedge N . \]

\[\text{ii) Let (c) be a space-like curve on the time-like surface. In trihedron [t,g,N], we assume that t and N are space-like vectors and g is time-like vector. Then the Lorentzian cross product for this vectors is given by} \]
\[t \wedge g = -N , g \wedge N = -t , N \wedge t = g. \]

Let \(\theta \) be the hyperbolic angle [5] between the time-like unit vectors \(n \) and \(g \). In this case, we have
\[N = n \sinh \theta + b \cosh \theta , \]
\[g = n \cosh \theta + b \sinh \theta . \]

Differentiating the \(t \), \(g \) and \(N \) according to the arc \(s \) of curve (c) we obtain the following formulae:
\[\frac{dt}{ds} = \rho \cosh \theta g - \rho \sinh \theta N \]
\[\frac{dg}{ds} = \rho \cosh \theta t + \left(\tau + \frac{d\theta}{ds} \right) N \]
\[\frac{dN}{ds} = \rho \sinh \theta t + \left(\tau + \frac{d\theta}{ds} \right) g . \]

Here, if we replace
\[\rho \cosh \theta = \frac{\cosh \theta}{R} = \frac{1}{R_g} = \rho_g \]
\[\rho \sinh \theta = \frac{\sinh \theta}{R} = \frac{1}{R_n} = \rho_n \]
\[\tau + \frac{d\theta}{ds} = \frac{1}{T} + \frac{d\theta}{ds} = \frac{1}{T_g} = \tau_g \]

then the Darboux derivative formulae are given by
\[\begin{align*}
\frac{dt}{ds} &= \rho_g g - \rho_n N \\
\frac{dg}{ds} &= \rho_t + \tau_g N \\
\frac{dN}{ds} &= \rho_n t + \tau_g g,
\end{align*} \tag{2.16} \]

where \(\rho_g \) is the geodesic curvature, \(\rho_n \) is the normal curvature and \(\tau_g \) is the geodesic torsion.

Consequently, we can write the Darboux instantaneous rotation vector of Darboux trihedron as
\[w = -\frac{1}{T_g} - \frac{g}{R_n} + \frac{N}{R_g}. \tag{2.17} \]

The formulae (2.16) can be given by (2.17) as follows:
\[\begin{align*}
\frac{dt}{ds} &= w \wedge t, & \frac{dg}{ds} &= w \wedge g, & \frac{dN}{ds} &= w \wedge N. \tag{2.18}
\end{align*} \]

Theorem 2.1. If the radius of torsion of the space-like curve (c) drawn on time-like surface \(y = y(u,v) \) is \(T \) and the hyperbolic angle between the time-like unit vectors \(n \) and \(g \) is \(\theta \), then we have
\[\frac{1}{T_g} = \frac{1}{T} + \frac{d\theta}{ds}. \tag{2.19} \]

Proof. Since \(\langle n, g \rangle = -\cosh \theta \) we have
\[\langle \frac{dn}{ds}, g \rangle + \langle n, \frac{dg}{ds} \rangle = -\sinh \theta \frac{d\theta}{ds}. \]

By (2.3) and (2.16) we obtain
\[\begin{align*}
\frac{1}{R} \left(\frac{1}{T} + \frac{1}{T_g} b \right) g + n \left(\frac{1}{R} \left(\frac{1}{T} + \frac{1}{T_g} N \right) = -\sinh \theta \frac{d\theta}{ds} \right. \\
\frac{1}{R} \langle t, g \rangle + \frac{1}{T} \langle b, g \rangle + \frac{1}{R_g} \langle n, t \rangle + \frac{1}{T_g} \langle n, N \rangle = -\sinh \theta \frac{d\theta}{ds}.
\end{align*} \]
\[
\frac{1}{T} \sinh \theta - \frac{1}{T_g} \sinh \theta = - \sinh \theta \frac{d\theta}{ds}
\]
\[
\frac{1}{T_g} = \frac{1}{T} + \frac{d\theta}{ds}.
\]

Theorem 2.2. Let the radius of curvature of the space-like curve \((c)\) on the time-like surface \(y(u,v)\) is \(R\) and the hyperbolic angle between the normal \(N\) of the surface and the binormal \(b\) is \(\theta\). If the radii of normal and geodesic curvatures are \(R_n\) and \(R_g\) respectively, then we have
\[
\frac{1}{R_n} = \frac{\sinh \theta}{R},
\]
\[
\frac{1}{R_g} = \frac{\cosh \theta}{R}.
\]

(2.20)

Proof. By (2.5) and (2.18) we have

\((f - w) \wedge t = 0.\)

If the values of vectors \(f\) and \(w\) are written, we find
\[
\frac{n}{R} = - \frac{N}{R_n} + \frac{g}{R_g}.
\]

If the both sides of this equation are scalarly multiplied with the vectors \(N\) and \(g\) and considered the equalities

\[\langle N, g \rangle = 0, \langle n, g \rangle = -\cosh \theta \quad \text{and} \quad \langle g, g \rangle = -1\]

then the proof is completed.

3. **THE FUNDAMENTAL THEOREMS CONNECTED WITH THE GEOMETRY OF TIME-LIKE SURFACES**

a) **Fundamental relations**

We know from previous section that

\[N \wedge t = -g, \quad N \wedge t_1 = -g_1, \quad N \wedge t_2 = g_2.\]

In this situation, three Darboux trihedron are obtained as follows:

\([t, g, N], [t_1, g_1, N] \quad \text{and} \quad [t_2, g_2, N].\)
The Darboux instantaneous rotation vectors corresponding to this trihedrons are given by

\[w = \frac{t}{T_g} + \frac{g}{R_n} - \frac{N}{R_g} \]

\[w_1 = \frac{t_1}{(T_{g_1})} + \frac{g_1}{(R_{n_1})} - \frac{N}{(R_{g_1})}, \quad w_2 = -\frac{t_2}{(T_{g_2})} - \frac{g_2}{(R_{n_2})} + \frac{N}{(R_{g_2})}, \]

(3.1)

respectively.

Here, let us denote arc lengths of the curves \((c_1), (c_2)\) and \((c)\) measured in the certain direction from \(P\) as \(s_1, s_2\) and \(s\), respectively. In this case, the following formulae are written:

\[t_1 = \frac{y_u}{||y||} = \frac{y_{u_1}}{\sqrt{E}} , \quad t_2 = \frac{y_v}{||y||} = \frac{y_{v_1}}{\sqrt{G}}, \quad t = y_u \frac{du}{ds} + y_v \frac{dv}{ds}. \]

(3.2)

If we write the two initial terms of (3.2) in the third term, then we obtain

\[t = y_u \frac{du}{ds} + y_v \frac{dv}{ds} = \sqrt{E} t_1 \frac{du}{ds} + \sqrt{G} t_2 \frac{dv}{ds}. \]

(3.3)

Let \(\theta\) be the hyperbolic angle between \(t\) and \(t_1\). If we take the inner poroduct of the equation (3.3) with \(t_1\) and \(t_2\), then the following formulae can be written:

\[\langle t, t_1 \rangle = -\cosh\theta = -\frac{1}{\sqrt{E}} \frac{du}{ds}, \quad \langle t, t_2 \rangle = \sinh\theta = \sqrt{G} \frac{dv}{ds} \]

(3.4)

\[t = \cosh\theta \ t_1 + \sinh\theta \ t_2. \]

(3.5)

For arcs \(ds, ds_1\) and \(ds_2\),

\[ds^2 = Edu^2 - Gdv^2 ; \quad F = 0 \]

\[ds_1^2 = Edu^2 ; \quad v = \text{const.}, \quad dv = 0 ; \quad ds_2^2 = Gdv^2 ; \quad u = \text{const.}, \quad du = 0. \]

(3.6)

If the formulae (3.4) and (3.6) are compared, then we have

\[\cosh\theta = \frac{1}{\sqrt{E}} \frac{ds_1}{ds}, \quad \sinh\theta = \sqrt{G} \frac{dv}{ds} = \frac{ds_2}{ds}. \]

(3.7)

Furthermore, since \(t \wedge N = g\) we can write

\[g = \cosh\theta \ g_1 - \sinh\theta \ g_2. \]

(3.8)
ON THE GEOMETRY OF TIME-LIKE SURFACES

Instead of considering the time-like curve (c), if we take space-like curve (c) perpendicular to this curve then we can write

\[t = \sinh \theta \ t_1 + \cosh \theta \ t_2 \] \hspace{1cm} (3.9)

\[g = -\sinh \theta \ g_1 - \cosh \theta \ g_2 . \] \hspace{1cm} (3.10)

The proof of fundamental theorem.

Let us choose the parameter curves as curvature lines. The tangent directions of \((c_1)\) and \((c_2)\) at the point \(P\) are given by

\[t_1 = \frac{y_u}{\sqrt{E}} , \ t_2 = \frac{y_v}{\sqrt{G}} . \]

Furthermore, from the \(O\) we can write. Rodrigues formulae

\[N_u = \frac{1}{R_1} \sqrt{E} \ t_1 , \ N_v = \frac{1}{R_2} \sqrt{G} \ t_2 . \]

The direction of an arbitrary tangent is

\[t = y_u \frac{du}{ds} + y_v \frac{dv}{ds} = \sqrt{E} \ t_1 \frac{du}{ds} + \sqrt{G} \ t_2 \frac{dv}{ds} . \]

By (3.4) we obtain

\[\frac{dN}{ds} = \frac{\cosh \theta}{R_1} \ t_1 + \frac{\sinh \theta}{R_2} \ t_2 . \] \hspace{1cm} (3.11)

On the other hand, if we consider the equalities (2.7) and (3.8) we can write

\[\frac{dN}{ds} = \left(\frac{\cosh \theta - \sinh \theta}{R_n} \right) t_1 + \left(\frac{\sinh \theta - \cosh \theta}{T_g} \right) t_2 . \] \hspace{1cm} (3.12)

By (3.11) and (3.12) the proof is completed.

The fundamental formulae of the theory of time-like surfaces can be given as the consequences of the formula (1.1):

Theorem 3.1. If the normal curvature corresponding to perpendicular two directions taken on the time-like surface are \(\frac{1}{(R_n)_1} \) and \(\frac{1}{(R_n)_2} \), and also the geodesic torsions corresponding to this directions are \(\frac{1}{(T_g)_1} \) and \(\frac{1}{(T_g)_2} \), then the Gaussian curvature is given by
\[K = \frac{1}{R_1 R_2} = \frac{1}{(R_n)_1 (R_n)_2} + \frac{1}{(T_g)_1 (T_g)_2}. \]

(3.13)

Proof. Instead of considering the tangent direction \(t \) of the time-like curve (c) if we consider the tangent direction \(t_1 \) of the curve \((c_1) \) we can write

\[
\begin{align*}
\cosh \theta & = \frac{\cosh \theta}{R_1} - \frac{\sinh \theta}{(R_n)_1} \\
\sinh \theta & = \frac{\sinh \theta}{R_2} - \frac{\cosh \theta}{(T_g)_1}.
\end{align*}
\]

(3.14)

Similarly, if we consider the tangent direction \(t_2 \) of the curve \((c_2) \) we obtain

\[
\begin{align*}
\sinh \theta & = \frac{\sinh \theta}{R_1} + \frac{\cosh \theta}{(R_n)_2} \\
\cosh \theta & = \frac{\cosh \theta}{R_2} + \frac{\sinh \theta}{(T_g)_2}.
\end{align*}
\]

(3.15)

By the equalities (3.14) and (3.15) the value of \(K \) is found.

Theorem 3.2. Let us assume that the derivatives of unit vectors of the Darboux trihedrons \([t,g,N]\), \([t_1,g_1,N]\) and \([t_2,g_2,N]\) with respect to parameter are exist and continuous. In this case, the following equalities are satisfied:

\[
\begin{align*}
\frac{dt_1}{ds} & = \begin{vmatrix}
\cosh \theta & \sinh \theta \\
\frac{1}{(T_g)_2} & \frac{1}{(R_n)_1}
\end{vmatrix} N - \begin{vmatrix}
\frac{1}{(T_g)_1} & \frac{1}{(R_n)_1} \\
\frac{1}{(T_g)_1} & \frac{1}{(R_n)_2}
\end{vmatrix} t_2, \\
\frac{dt_2}{ds} & = -\begin{vmatrix}
\sinh \theta & \cosh \theta \\
\frac{1}{(T_g)_1} & \frac{1}{(R_n)_2}
\end{vmatrix} N - \begin{vmatrix}
\frac{1}{(T_g)_1} & \frac{1}{(R_n)_2} \\
\frac{1}{(T_g)_2} & \frac{1}{(R_n)_1}
\end{vmatrix} t_1.
\end{align*}
\]

(3.16)

Proof. From the (3.5) and (3.8) we know that

\[t = \cosh \theta \, t_1 + \sinh \theta \, t_2, \]

\[g = -\sinh \theta \, g_1 - \cosh \theta \, g_2. \]
Furthermore we have \(g_1 = -t_2, \; g_2 = t_1 \). On the other hand, we can write
\[
\frac{dt_1}{ds} = \frac{\partial t_1}{\partial s_1} \cosh \theta + \frac{\partial g_2}{\partial s_2} \sinh \theta
\]
\[
\frac{dt_2}{ds} = -\frac{\partial g_1}{\partial s_1} \cosh \theta + \frac{\partial t_2}{\partial s_2} \sinh \theta.
\] (3.17)

If we consider the Darboux derivative formulae given for the curves \((c_1)\) and \((c_2)\), we obtain
\[
\frac{\partial t_1}{\partial s_1} = \frac{1}{(R_{g1}^2)} t_1 + \frac{1}{(R_{g1}^2)} N,
\frac{\partial g_1}{\partial s_1} = \frac{1}{(R_{g1}^2)} t_1 + \frac{1}{(R_{g1}^2)} N
\]
\[
\frac{\partial t_2}{\partial s_2} = \frac{1}{(R_{g2}^2)} t_2 - \frac{1}{(R_{g2}^2)} N,
\frac{\partial g_2}{\partial s_2} = \frac{1}{(R_{g2}^2)} t_2 + \frac{1}{(R_{g2}^2)} N.
\] (3.18)

If this derivatives are replacing in (3.17) the proof is completed.

Corollary 3.3. If we consider the formulae (3.18) then the Gaussian curvature is given by
\[
K = \frac{1}{R_1 R_2} = \left\langle \frac{\partial t_1}{\partial s_1}, \frac{\partial t_2}{\partial s_2} \right\rangle + \left\langle \frac{\partial t_1}{\partial s_1}, \frac{\partial t_2}{\partial s_1} \right\rangle.
\] (3.19)

Corollary 3.4. The relation
\[
\left\langle t_2, \frac{dt_1}{ds} \right\rangle = -t_1, \quad \left\langle t_1, \frac{dt_2}{ds} \right\rangle = \frac{\cosh \theta}{(R_{g1}^2)} - \frac{\sinh \theta}{(R_{g2}^2)}
\] (3.20)
is valid.

Theorem 3.5. The normal curvatures take the maximum or minimum value at principal directions.

Proof. By the formula (1.1) we can write
\[
\left(\frac{1}{R_1} - \frac{1}{R_n} \right) \left(\frac{1}{R_2} - \frac{1}{R_n} \right) = \frac{1}{T^2} > 0.
\] (3.21)

This shows that \(\frac{1}{R_1} - \frac{1}{R_n} \) and \(\frac{1}{R_2} - \frac{1}{R_n} \) have the same signature. Without loss of generality, let us assume \(\frac{1}{R_1} - \frac{1}{R_n} < \frac{1}{R_1} \). In this case, we obtain that \(\frac{1}{R_n} < \frac{1}{R_2} \) and \(\frac{1}{R_n} > \frac{1}{R_1} \). This completes the proof.
Theorem 3.6. (Enneper Formula) There exists the relation
\[\frac{1}{T_g} = \frac{1}{T} = \sqrt{K} \] (3.22)
between the torsion of asymptotic lines and the Gaussian curvature of the
time-like surface, at the point P.

Proof. On the asymptotic lines, we know that \(\frac{1}{R_n} = 0 \). If we consider
the equation (3.21) the proof is completed.

Theorem 3.7. (O. Bonnet Formula) For the geodesic torsion, we
can write
\[\frac{1}{T_g} = \sinh \theta \cosh \theta \left(\frac{1}{R_1} - \frac{1}{R_2} \right) . \] (3.23)

Proof. In the formula (1.1), if we multiply the first equation with
\(\sinh \theta \) and the second equation with \(\cosh \theta \), and derive from first the
second, the formula (3.23) is found.

Theorem 3.8. (Euler Formula) The normal curvature at any
direction is given by
\[\frac{1}{R_n} = \frac{\cosh^2 \theta}{R_1} - \frac{\sinh^2 \theta}{R_2} , \] (3.24)
where \(\frac{1}{R_1} \) and \(\frac{1}{R_2} \) are principal curvatures.

Proof. By the formula (1.1) we have
\[\frac{\cosh^2 \theta}{R_1} = \frac{\cosh^2 \theta}{R_n} - \frac{\sinh^2 \theta \cosh^2 \theta}{T_g} , \]
\[\frac{\sinh^2 \theta}{R_2} = \frac{\sinh^2 \theta}{R_n} + \frac{\sinh \theta \cosh^2 \theta}{T_g} . \] (3.25)
If we derive from first equation of (3.25) the formula (3.24) is obtained.

Theorem 3.9. (J. Liouville Formula) The geodesic curvature of an
arbitrary time-like curve (c) at direction t is given by
\[\frac{1}{R_g} = \cosh \theta \sinh \theta - \frac{d\theta}{\left(R_g \right)^2} ds , \] (3.26)
where $\frac{1}{(R_{gh})}$ and $\frac{1}{(R_{gh})}$ are geodesic curvatures at the directions t_1 and t_2, respectively.

Proof. Differentiating the equation (3.5) with respect to s, we obtain

$$\frac{dt}{ds} = (t_1 \sinh\theta + t_2 \cosh\theta) \frac{d\theta}{ds} + \cosh\theta \frac{dt_1}{ds} + \sinh\theta \frac{dt_2}{ds}.$$

By (2.5) and (2.18) we can write

$$\frac{1}{R_g} - \frac{1}{R_n} N = -g \frac{d\theta}{ds} + \cosh\theta \frac{dt_1}{ds} + \sinh\theta \frac{dt_2}{ds}.$$

From this equality, we find that

$$\frac{1}{R_g} = -\frac{d\theta}{ds} + \langle g, \cosh\theta \frac{dt_1}{ds} + \sinh\theta \frac{dt_2}{ds} \rangle,$$

$$\frac{1}{R_n} = \frac{d\theta}{ds} \langle -\sinh\theta t_1 - \cosh\theta t_2, \cosh\theta \frac{dt_1}{ds} + \sinh\theta \frac{dt_2}{ds} \rangle,$$

$$\frac{1}{R_t} = -\frac{d\theta}{ds} - \cosh^2\theta \langle \frac{dt_1}{ds}, t_2 \rangle - \sinh^2\theta \langle \frac{dt_2}{ds}, t_2 \rangle,$$

$$\frac{1}{R_t} = -\frac{d\theta}{ds} - (\cosh^2\theta - \sinh^2\theta) \langle t_2, \frac{dt}{ds} \rangle,$$

$$\frac{1}{R_t} = -\frac{d\theta}{ds} \langle t_2, \frac{dt}{ds} \rangle.$$

If we consider the formula (3.19) the proof is completed.

REFERENCES

