ON THE SUBRINGS OF THE RING OF ANALYTIC FUNCTIONS AND CONFORMALLY EQUIVALENCE

EKREM KADIOĞLU* and MUSTAFA BAYRAKTAR**

* Department of Mathematics, Atatürk University, Faculty of Sciences and Arts, 25240 Erzurum-TURKEY
**Department of Mathematics, Uludağ University, Faculty of Sciences and Arts, Bursa-TURKEY

(Received Nov. 6, 1995; Revised Apr. 12, 1996; Accepted June 13, 1996)

ABSTRACT

We consider the discrete sets $D_i \subseteq G_i$ of the regions G_i in the complex plane \mathcal{E} and study the subrings of the rings of analytic functions $A(G_i)$ corresponding to these discrete sets D_i ($i=1,2$). Furthermore, we prove that the sets of zeros of the functions which map onto each other under the \mathcal{E}-isomorphism $\Phi: A(G_1) \rightarrow A(G_2)$, are also mapped onto each other by a conformal mapping $\varphi: G_2 \rightarrow G_1$, where $\Phi(f) = f \circ \varphi$.

1. INTRODUCTION

Helmer had shown that finitely generated ideal in the ring of entire functions was a principle ideal [2]. After this work, some other authors have started to work on the rings of analytic functions, and conformal equivalence was characterized algebraically.

Let G_1 and G_2 be two domains in the complex plane, and let $A(G_1)$ and $A(G_2)$ be the rings of analytic functions of G_1 and G_2 respectively. If these exists a \mathcal{E}-isomorphism between $A(G_1)$ and $A(G_2)$, then G_1 and G_2 are conformally equivalent [1]. The problem was generalized to open Riemann surfaces G_1 and G_2 [4]. It was shown that two domains G_1 and G_2 in the complex plane were conformally equivalent if the rings $B(G_1)$ and $B(G_2)$ of all bounded analytic functions defined on them were algebraically \mathcal{E}-isomorphic [3]. When we discuss the rings $B(G_i)$ ($i=1,2$), it is always assumed that G_i is bounded and has the following property: for any $z \in \partial G_i$, boundary of G_i, there exists a function $f \in B(G_i)$ for which z is an unremovable singularity. It is proved that if there is a
\mathcal{C}-isomorphism between $A(G_1)$ and $A(G_2)$, then the sets G_1 and G_2 are conformally equivalence [5].

Definition 1.1. Let S be any non-empty subset of the complex plane \mathbb{C} and $f: S \to \mathbb{C}$ be a function. If f is an analytic function in the domain which contains S, f is called an analytic function is S.

Let G be any non-empty subset of \mathbb{C} and $A(G)$ be the set of single-valued analytic functions on G. The set $A(G)$ is a ring with respect to two binary operations which are defined by $(f+g)(z) = f(z)+g(z)$ and $(fg)(z) = f(z)g(z)$.

Definition 1.2. Let G_1 and G_2 be two non-empty subsets of \mathbb{C}. If the mapping $\varphi: G_1 \to G_2$ is analytic and bijective, then φ is called a conformal mapping from G_1 to G_2. In this case, G_1 and G_2 are called conformally equivalent.

In this work, an analytic function means that it is a single-valued analytic function.

Let $a \in G$ be an arbitrary but fixed point. The set $M_a = \{f \in A(G): f(a) = 0\}$ is a maximal ideal which is generated by $z-a$ from $A(G)$. M_a is called a fixed maximal ideal of $A(G)$, and all other maximal ideals of $A(G)$ are called free maximal ideal.

Definition 1.3. Let G be a region (or a set) in the complex plane and $D \subset G$. If D has no limit point in G, then D is called a discrete subset of G.

Theorem 1.4. Let G_1 and G_2 be two subsets of \mathbb{C}, and Φ be an \mathcal{C}-isomorphism from $A(G_1)$ onto $A(G_2)$. Then Φ induces a mapping $\varphi: G_2 \to G_1$, defined by $\Phi(f) = f \circ \varphi$, and φ is a conformal mapping of G_2 onto G_1 [5].

Theorem 1.5. Let G_1 and G_2 be two subsets of \mathbb{C}, and $\varphi: G_2 \to G_1$ be a conformal mapping. Then the mapping Φ defined by $\Phi(f) = f \circ \varphi$ is a \mathcal{C}-isomorphism from $A(G_1)$ onto $A(G_2)$ [5].
2. SUBRINGS OF THE RING A(G)

In this section, subrings of the ring A(G) corresponding to the discrete sets will be investigated.

Theorem 2.1. Let

\[A_{D_1}(G_1) = \{ f \in A(G_1): f(u) = \text{constant, for all } u \in D_1 \} \]

and

\[A_{D_2}(G_2) = \{ g \in A(G_2): g(v) = \text{constant, for all } v \in D_2 \} \]

where \(D_1 \) and \(D_2 \) are discrete subsets of \(G_1 \) and \(G_2 \), respectively. Let \(\varphi: G_2 \rightarrow G_1 \) be a bijective analytic mapping. If \(\varphi(D_2) = D_1 \), then \(\Phi: A_{D_1}(G_1) \rightarrow A_{D_2}(G_2) \), \(\Phi(f) = f \circ \varphi \) is a \(\mathcal{C} \)-isomorphism.

Proof: It is easily seen that \(\Phi(f_1 f_2) = \Phi(f_1) \Phi(f_2) \) and \(\Phi(f_1 + f_2) = \Phi(f_1) + \Phi(f_2) \). Hence \(\Phi \) is a homomorphism. Since \(g \) is an element of \(A_{D_2}(G_2) \), \(g \circ \varphi^{-1} \in A_{D_1}(G_1) \). If \(\varphi^{-1}(c) \in D_2 \), \(c \in D_1 \), then \((g \circ \varphi^{-1})(c) = g(\varphi^{-1}(c)) \) = constant. Therefore, for all \(g \in A_{D_2}(G_2) \), there exists \(g \circ \varphi^{-1} \in A_{D_1}(G_1) \) such that \(\Phi(g \circ \varphi^{-1}) = (g \circ \varphi^{-1}) \circ \varphi = g \). Hence \(\Phi \) is onto. On the other hand, since

\[\Phi(f_1) = \Phi(f_2) \Rightarrow f_1 \circ \varphi = f_2 \circ \varphi \Rightarrow f_1 = f_2 \]

\(\Phi \) is one to one. It is obvious that the constants are invariant under the isomorphism \(\Phi \). Hence \(\Phi \) is a \(\mathcal{C} \)-isomorphism.

The following theorem gives us a relation between the ring \(A(G) \) and the subring \(A_D(G) \).

Theorem 2.2. If a discrete set \(D \subset G \) contains only one element, i.e., \(D = \{ a \} \), then \(A_D(G) = A(G) \).

Proof: From definition of \(A_D(G) \), we have \(A_D(G) \subset A(G) \). On the other hand, suppose that \(f \in A(G) \). In this case, since \(f(a) = \text{constant} \), \(f \) is an element of \(A_D(G) \). Then \(A(G) \subset A_D(G) \) holds. Therefore, \(A(G) = A_D(G) \).

By this theorem, we can say that we will be able to work on the subring \(A_D(G) \) instead of the ring \(A(G) \). If \(D \) has only one element, we can take the set \(A_D(G) \) for \(A(G) \).
Corollary 2.3. Let D_1 and D_2 be two discrete subsets of G. If $D_1 \subset D_2$

$$A_{D_1}(G) = \{ f \in A(G): f(u) = \text{constant, for all } u \in D_1 \}$$

and

$$A_{D_2}(G) = \{ g \in A(G): g(v) = \text{constant, for all } v \in D_2 \}$$

then $A_{D_2}(G) \subset A_{D_1}(G)$.

Proof: Let $f \in A_{D_2}(G)$. Then for all $v \in D_2$, $f(v) = \text{constant}$. Since $D_1 \subset D_2$ and $f(u) = \text{constant}$ for all $u \in D_1$, $f \in A_{D_1}(G)$. Hence, we have $A_{D_2}(G) \subset A_{D_1}(G)$.

Let $D_f \subset G$ be a set of zeros of $f \in A(G)$. Now we can give the following theorem on maximal ideals of $A_{D_f}(G)$.

Theorem 2.4. Let $f \in A(G)$ and D_f be a finite set. Furthermore suppose that

$$A_{D_f}(G) = \{ g \in A(G): g(u) = \text{constant, for all } u \in D_f \}$$

Then

$$\{ g(z) \prod_{u \in D_f} (z-u): g \in A(G) \}$$

is a maximal ideal of $A_{D_f}(G)$.

Proof. It is calisy shown that $J = \{ g(z) \prod_{u \in D_f} (z-u): g \in A(G) \}$ is an ideal of $A_{D_f}(G)$. Now, we will show that this ideal is maximal. Let us consider the mapping $\psi_u: A_{D_f}(G) \to \mathcal{E}$, $\psi_u(g) = g(u)$, $u \in D_f$. It is clear that the mapping ψ_u is a homomorphism. There exists $h = f^0 + ce A_{D_f}(G)$ such that $\psi_u(h) = h(u) = e$, $(c \in \mathcal{E})$, hence ψ_u is onto. At the same time

$$\text{Ker} \psi_u = \{ h \in A_{D_f}(G): \psi_u(h) = h(u) = 0 \}.$$

Since $h(u) = 0$ for all $u \in D_f$ and $h \in A_{D_f}(G)$, we get $h(z) = g(z) \prod_{u \in D_f} (z-u)$, where $g \in A(G)$. Hence $\text{Ker} \psi_u = J$. According to the first isomorphism theorem

$$A_{D_f}(G)/J \cong \mathcal{E}.$$
Hence, J is a maximal ideal.

$M_a = \{g \in A(G) : g(a) = 0\}$ is a maximal ideal of $A(G)$, where $a \in G$. In Theorem 2.4, taking a discrete set instead of a, this result is generalized for maximal ideals.

Theorem 2.5. Let D_{f_1} and D_{f_2} be sets of zeros of $f_1 \in A(G_1)$ and $f_2 \in A(G_2)$, respectively. Moreover, suppose that the mapping $\Phi : A(G_1) \to A(G_2)$ defined by $\Phi(f) = f \circ \varphi$ is a C-isomorphism. If $\Phi(f_1) = f_2$, then $\varphi(D_{f_2}) = D_{f_1}$.

Proof. From Theorem 2.4, G_2 and G_1 are conformally equivalent, i.e., there exists a mapping $\varphi : G_2 \to G_1$ which is analytic and bijective. From the hypothesis $f_2 = f_1 \circ \varphi$. If $a \in D_{f_2}$, then

$$0 = f_2(a) = (f_1 \circ \varphi)(a) = f_1(\varphi(a)).$$

Thus, $\varphi(a) \in D_{f_1}$. Since a is an arbitrary element of D_{f_2}, we have that $\varphi(D_{f_2}) \subseteq D_{f_1}$. On the other hand, if $d \in D_{f_1}$, then there exists $c \in G_2$ such that $\varphi(c) = d$. Hence

$$0 = f_1(d) = f_1(\varphi(c)) = (f_1 \circ \varphi)(c) = f_2(c)$$

and $c \in D_{f_2}$. Thus $D_{f_1} \subseteq \varphi(D_{f_2})$. Then the result follows.

We can give the following theorem as a corollary of Theorem 2.1 and 2.5.

Theorem 2.6. If $F : A(G_1) \to A(G_2)$ is a C-isomorphism and $\Phi(f_1) = f_2$, then

$$A_{D_{f_1}}(G_1) \cong A_{D_{f_2}}(G_2).$$

Proof. From the hypothesis and Theorem 2.4, G_2 and G_1 are conformally equivalent, i.e., there exists a mapping $\varphi : G_2 \to G_1$ which is analytic and bijective. According to Theorem 2.5, $\varphi(D_{f_2}) = D_{f_1}$. From Theorem 2.1, we have

$$A_{D_{f_1}}(G_1) \cong A_{D_{f_2}}(G_2).$$
REFERENCES

