ON THE DUALITY OF GENERALISED EULER FORMULA FOR EUCLIDEAN HYPERSURFACES

MEHMET ERDOĞAN

Department of Mathematics, Fırat University, Elazığ / TURKEY.

ABSTRACT

In order to define the generalised Euler formula in a dual manner, we studied the angles between two hyperplanes in \mathbb{R}^{n+1} and we obtained that the Gauss curvature can be expressed by the normal curvature and its dual form.

I. INTRODUCTION

In Euclidean space \mathbb{R}^{n+1} of dimension $n + 1$ we consider an n-dimensional hypersurface M given by a local coordinate system $\{u^1, u^2, \ldots, u^n\}$. Let $\{x_1, x_2, \ldots, x_{n+1}\}$ be an orthogonal coordinate system of \mathbb{R}^{n+1}. We assume that the x_i's are C^∞ functions of u^a's and that $1 \leq i \leq n + 1$, $1 \leq a \leq n$. Let X be a vector whose orthogonal components are (x_1, \ldots, x_{n+1}), then the hypersurface M can be characterized by a vector function

$$X = X(u^a), \quad a = 1, \ldots, n.$$ (I.1)

Let us denote by N the unit normal vector field of the hypersurface M, then it satisfies the conditions $\langle N, N \rangle = 1$ and $\langle N, \frac{\partial X}{\partial u^a} \rangle = 0$. Now let us introduce an orthonormal frame in \mathbb{R}^{n+1} by e_i, and using this frame we can write that

$$N = \sum_{i=1}^{n+1} N_i e_i$$ (I.2)

and that

$$\frac{\partial X}{\partial u^k} = \sum_{i=1}^{n+1} (x_k)_i e_i, \quad k = 1, \ldots, n,$$ (I.3)

where $N = N_i (u^a)$, $a = 1, \ldots, n$, $1 \leq i \leq n + 1$.
II. PRELIMINARIES

Let \(v \) denote a tangent vector of the tangent space \(T_M(m) \) at the point \(m \) of hypersurface \(M \). In this direction the curvature \(\frac{1}{R} \) of the hypersurface \(M \) is defined by

\[
\frac{1}{R} = - \langle v, \frac{\partial N}{\partial u^k} \rangle = h_{x\beta} u^x u^\beta \quad \text{(II.1)}
\]

where \(h_{x\beta} \) is the second fundamental tensor of \(M \) and defined as

\[
h_{x\beta} = \langle N, \frac{\partial^2 X}{\partial u^x \partial u^\beta} \rangle = - \langle \frac{\partial N}{\partial u^x}, \frac{\partial X}{\partial u^\beta} \rangle.
\]

The principal curvatures at a point of \(M \) are the eigenvalues of the second fundamental tensor evaluated at this point. Hence they are the roots of the characteristic equation as follows

\[
det \left[h_{x\beta} - \frac{1}{R} g_{x\beta} \right] = (-1)^n \det (g_{x\beta}) \left(\frac{1}{R} - \frac{1}{R_1} \right) \cdots \left(\frac{1}{R} - \frac{1}{R_n} \right)
= (-1)^n \det (g_{x\beta}) \left\{ \frac{1}{R^n} - \frac{1}{R^{n-1}} \left(\sum_{i_1=1}^{n} \frac{1}{R_{i_1}} \right) + \frac{1}{R^{n-2}} \left(\sum_{i_1 < i_2} \frac{1}{R_{i_1} R_{i_2}} \right)
+ \cdots + (-1)^{n-1} \frac{1}{R} \left(\sum_{i_1 < \ldots < i_{n-1}} \frac{1}{R_{i_1} \ldots R_{i_{n-1}}} \right) + (-1)^n \frac{1}{R_1 \ldots R_n} \right\} = 0 \quad \text{(II.2)}
\]

where \(g_{x\beta} \)'s are the coefficients of the first fundamental form of the hypersurface \(M \). The principal directions always exist and we can find an orthonormal system of principal directions.

Now let \(\theta_x \) denote the angles between the direction \(v \) and the principal directions, where \(\alpha \) runs from 1 to \(n \). If we denote the principal directions by \(t_1, \ldots, t_n \), then \(\theta_1 \triangleleft (t_1, v), \ldots, \theta_n \triangleleft (t_n, v) \).

The curvature \(\frac{1}{R} \) in this direction \(v \) can be expressed in terms
of the principal curvatures \(\frac{1}{R_i} \), \(i = 1, \ldots, n \), by means of Euler's formula

\[
\frac{1}{R} = \sum_{i=1}^{n} \frac{1}{R_i} \sin^2 \theta_i. \tag{II.3}
\]

Now let us define a kind of normal curvature which we will denote by \(\overline{R} \) and will be thought as a dual corresponding of \(R \). This will be defined at the image point of \(m \) under the normal projection in the direction \(v \) of \(M \). This concept has been defined by A. Mannheim (see [1] and [4]). From this dual viewpoint the Euler formula may be constructed as

\[
\overline{R} = \sum_{i=1}^{n} R^*_i \sin^2 \theta_i \tag{II.4}
\]

where \(R^*_i \) shows the dual principal curvature corresponding to \(\frac{1}{R_i} \).

Denoting by \(v \) the rectangular components of the unit vector \(v \) we write that

\[
v = \sum_{i=1}^{n} v_i e_i. \tag{II.5}
\]

Also we have that \(\cos \theta_i = \langle v, e_i \rangle \), \(i = 1, \ldots, n \). On multiplying both members of (II.5) by \(e_k \) we find that \(v_k = \langle v, e_k \rangle \) and that \(v_i = \cos \theta_i, i = 1, \ldots, n \). Consequently we have

\[
v = \sum_{i=1}^{n} e_i \cos \theta_i \quad \text{or} \quad \sum_{i=1}^{n} \cos^2 \theta_i = 1. \tag{II.2}
\]

III. ANGLES BETWEEN HYPERPLANES IN \(R^{n+1} \)

Let us consider two \(n \)-dimensional tangent vectors \(T_1^n, T_2^n \) which are \(n \)-planes in euclidean space \(R^{n+1} \) and \(t_1 \) and \(t_2 \) be the tangent vectors of the normal sections of \(T_1^n \) and \(T_2^n \) with hypersurface \(M \). Also define the angles between the vectors \(t_1, t_2 \) and any vector in tangent space \(T_m(m) \). To find this angles we will follow the procedure which has been given by H. Gluck [2]. The angle between a pair of lines in euclidean space \(R^{n+1} \) is the smaller of the two possible angles between any vectors parallel to these lines. The angle between a line and a hyperplane (that will be consider as a tangent vector to \(M \)) is
the smallest angle between this line and any line in hyperplane. This is the same as the angle between a line and its orthogonal projection in hyperplane, or $\pi/2$ in case this orthogonal projection degenerates to a point. Let us consider now a pair of hyperplanes of n-dimensional T_1^n and T_2^n in \mathbb{R}^{n+1}. Suppose that among all pairs of lines, one from T_1^n and one from T_2^n, the lines t_1 and t_2 make the smallest possible angle, w_1, with each other. Let T_1^{n-1} and T_2^{n-1} be the orthogonal complements of t_1 and t_2 in T_1^n and T_2^n, respectively. Then it is easily seen that t_1 is orthogonal not only to T_1^{n-1} but also to T_2^{n-1}, and similarly t_2 is orthogonal not only to T_2^{n-1} but also to T_1^{n-1}. If we iterate this procedure with T_1^{n-1} and T_2^{n-1} in the roles of T_1^n and T_2^n, we get another angle $w_2 = w_1$. Doing this n-times we get n angles $0 \leq w_1 \leq w_2 \leq \ldots \leq w_n \leq \pi/2$. This angles depend only on T_1^n and T_2^n, and not on the various choices possible during the above procedure, and these angles are called the principal angles between the hyperplane T_1^n and T_2^n. If we choose two orthonormal bases $\{u_1, \ldots, u_n\}$ and $\{v_1, \ldots, v_n\}$ for the subspaces V_1^n and V_2^n parallel to T_1^n and T_2^n such that $\langle u_i, v_i \rangle = \cos w_i$ for $1 \leq i \leq n$ and $\langle u_i, v_j \rangle = 0$ for $i \neq j$.

Note that the orthogonal projection of v_i into V_2^n is $(\cos w_i) v_i$ and the orthogonal projection of v_i into V_1^n is $(\cos w_i) u_i$. Suppose that it is desired to find a single angle which might reasonably be called the angle between T_1^n and T_2^n. If one is forced to choose from among the principal angles, one would have to select the largest principal angle w_n for such a role, in order to insure that T_1^n and T_2^n are parallel if and only if the angle between them is zero. To arrive at the right definition carefully consider the case $n = 1$.

Then there is just one principal angle w between the lines t_1 and t_2 and it coincides with the ordinary angle θ between these lines. This angle θ, lying between 0 and $\pi/2$, has the following property. If U is any measurable subset of t_1 with one-dimensional measure $s(U)$, then the orthogonal projection of U into t_2 is also measurable and has one-dimensional measure $(\cos \theta) s(U)$ in t_2. Similarly, if U' is a measurable subset of t_2 with measure $s(U')$, then the orthogonal projection of U' into t_1 has measure $(\cos \theta) s(U')$ in t_1. Thus the angle θ between t_1 and t_2 may be defined as that angle between 0 and $\pi/2$ whose cosine is the reduction factor for one-dimensional measure under orthogonal projection of t_1 into t_2, then (via) matrix of the orthogonal projection of V_{t_1} into V_{t_2} has a determinant whose absolute value is $\cos \theta$. So we can give the following definition directly.
Definition III.1. Let T^1_n and T^2_n be hyperplanes in R^{n+1}. Let the number p, $0 \leq p \leq 1$, be the reduction factor for n-dimensional measure under orthogonal projection of T^1_n into T^2_n. Then the unique angle θ, $0 \leq \theta \leq \pi/2$ such that $\cos \theta = p$, will be called the angle between T^1_n and T^2_n. The following theorem gives us the relation between the angle θ and the principal angles w_1, \ldots, w_n.

Theorem III.1. Let T^1_n and T^2_n be hyperplanes in R^{n+1}, and let $w_1 \leq w_2 \leq \ldots \leq w_n$ be the principal angles between them. Then the angle θ between T^1_n and T^2_n is given by $\cos \theta = \cos w_1 \ldots \cos w_n$. For a proof of this theorem see the paper [2]. To give a practical technique for computing the angle between two hyperplanes we will express the following theorem:

Theorem III.2. Let T^1_n and T^2_n be hyperplanes in R^{n+1}, and let $\{u_1, \ldots, u_n\}$ and $\{v_1, \ldots, v_n\}$ be arbitrary bases for V^1_n and V^2_n, respectively. Then the angle θ between the hyperplanes is given by the formula

$$\cos \theta = \frac{\left| \det (u_i, v_j) \right|}{\sqrt{\det (u_i, u_j)} \sqrt{\det (v_i, v_j)}}. \tag{III.1.}$$

This formula is the generalisation of the formula known for one dimensional two vectors in a vector space. Now we will give a classical concept which is called Dupin indicatrix.

Definition III.2. Dupin indicatrix I_m at each point m in M is the subset of $T^0_d(m)$ consisting of all vectors z such that $<S_z, z> = \pm 1$ and $S_z = \hat{D} z : N$, where S is the weingarten map and \hat{D} is the natural connection defined on R^{n+1}, [3]. Now let t_1, \ldots, t_n be an orthonormal set of eigen vectors of the map S^* which will be assumed as dual corresponding of the weingarten map S. Then $z = \sum_{j=1}^{n} a_j t_j$ and we write

$$<S^*z, z> = \sum_{j=1}^{n} a_i S^* t_i, \sum_{j=1}^{n} a_i t_j = \sum_{j=1}^{n} (a_i)^2 <S^* t_i, t_j>$$

$$= \sum_{j=1}^{n} (a_i)^2 \frac{1}{R^*_1 \ldots R^*_j \ldots R^*_n} \tag{III.2}$$

where \hat{R}^*_j indicates that the R^*_j is omitted as an argument.

Now let Q be a point in the intersection of I_m and T^0_o, then we illustrate the following figure in dimension 2.
By using figure III.1, for n-dimension we might infer that

\[a^j = \frac{\sqrt{R} \sin \theta_j}{\sin \left(\sum_j \theta_j \right)} , \quad 1 \leq j \leq n, \quad (\text{III.3.}) \]

where \(\theta_j \)'s are defined as in the Theorem III.1. Putting (III.3) into (III.2) we get from (II.4) that

\[
\frac{\sin^2 \left(\sum \theta_j \right)}{R} = \frac{\sin^2 \theta_1}{R^*_1 R^*_2 \ldots R^*_n} + \frac{\sin^2 \theta_2}{R^*_1 R^*_2 \ldots R^*_n} + \ldots \\
+ \frac{\sin^2 \theta_n}{R^*_1 \ldots R^*_{n-1} R^*_n} \quad (\text{III.4})
\]

CONCLUSION

For the special case \(\sum \theta_j = \pi / 2 \) we have \(R_i = R_i^* \), \(1 \leq i \leq n \), so the expression (III.4) changes into (II.3), but there is a slight difference that we will omit it here. (III.4) gives us a dual form of generalised Euler formula. Thus we get a relation between \(R \) and \(\bar{R} \) by using (III.4) and (II.4). To get this we will use that

\[R^*_1 \ldots \hat{R}^*_j \ldots R^*_n = \frac{1}{K R_j^*} , \quad (K \text{ is the Gaussian curvature}), \]

so we have that
$$R \overline{R} = \frac{\sin^2(\sum \theta_j) \left(R_1^* \sin^2 \theta_1 + \ldots + R_n^* \sin^2 \theta_n \right)}{\frac{1}{K R_1^*} + \ldots + \frac{1}{K R_n^*}}$$

or $K = \frac{\sin^2(\sum \theta_j)}{R \overline{R}}$. And finally for the special case $\sum \theta_j = \pi/2$

we find that

$$K = \frac{1}{R \overline{R}}.$$

(III.5)

REFERENCES

