ON THE MEUSNIER'S THEOREM FOR LORENTZIAN SURFACES

E. İYİGÜN — E. ÖZDAMAR

Uludağ University, Sci. and Art. Fac. Maths. Dept. Bursa, Turkey
(Received Sep. 1, 1993: Revised March 8, 1994: Accepted March 30, 1994)

ABSTRACT

In the present paper we give an analog of the Meusnier's Theorem for Lorentzian surfaces in the Lorentzian space of the dimension 3.

1. INTRODUCTION

By L^3 we denote the space R^3 endowed with the inner product $<,>$ of index 1 and call it Lorentzian 3--space. In L^3 every tangent space of a surface can be considered as a subspace of L^3 in a canonical way. Thus if a surface in L^3 has the tangent spaces of index 1 then we call the surface Lorentzian as in [4]. In addition, a curve in a Lorentzian surface called time--like, space--like or null whether its velocity vector is, [1].

In the Riemannian case, it is well known that all the curves pass through a point, say p, and have common and non asymptotic tangents at the point p have their curvature centers on a unique sphere and also have their curvature circles on another unique sphere. This fact known as the Meusnier's Theorem (see [2]). The essential part of this work devoted to give an analog of this fact in L^3.

Let $x: I \rightarrow L^3$ be a unit speed curve in L^3 and $X = \dot{x}$, where the notation dot indicates the derivative. If x is a space--like curve then there exist unique orthonormal vectors X, Y, Z, and the first and the second curvature functions k_1, k_2 from I to R such that

$$<X, X> = 1, <Y, Y> = -1, <Z, Z> = 1,$$

$$<X, Y> = <Y, Z> = <X, Z> = 0,$$

$$D_XX = k_1Y$$

$$D_XY = k_1X + k_2Z$$

$$D_XZ = k_2Y$$

or
\[
\langle X, X \rangle = 1, \quad \langle Y, Y \rangle = 1, \quad \langle Z, Z \rangle = -1,
\]
\[
\langle X, Y \rangle = \langle Y, Z \rangle = \langle X, Z \rangle = 0,
\]
\[
\begin{align*}
D_x X &= k_1 Y \\
D_x Y &= -k_1 X + k_2 Z \\
D_x Z &= k_2 Y
\end{align*}
\]
(1.2)

where \(Y\) is time–like or space–like. If the curve \(z\) is time–like then the unique orthonormal frame field \(\{X, Y, Z\}\), exists such that

\[
\begin{align*}
\langle X, X \rangle &= -1, \quad \langle Y, Y \rangle = \langle Z, Z \rangle = 1, \\
\langle X, Y \rangle = \langle Y, Z \rangle = \langle Z, X \rangle &= 0,
\end{align*}
\]
\[
\begin{align*}
D_x X &= k_1 Y \\
D_x Y &= k_1 X + k_2 Z \\
D_x Z &= -k_2 Y
\end{align*}
\]
(1.3)

where \(\{X, Y, Z\}\) called Frenet frame field of \(z\), [3].

We give the notion of curvature center as the following which is just as in the Euclidean case.

Definition 1. Let \(z: I \rightarrow L^3\) be a non–null curve and \(\{X, Y, Z\}\), \(k_1\) are the Frenet frame field on \(z\) and the first curvature function of \(z\). The point

\[
C(t) = z(t) + \frac{1}{k_1(t)} Y
\]

is called the curvature center of \(z\) at the point \(z(t)\) and the pseudo 1–sphere centered at the point \(C(t)\) that lay on the plane spanned by \(X\) and \(Y\) called *curvature circle* of \(z\) at the point \(p\).

Now, we recall a definition about plane sections, just as in the case of \(E^3\), [2], as follows:

Definition 2. Let \(M\) be a Lorentzian surface in \(L^3\) and \(\Pi\) a plane which passes through a point \(p \in M\). If a tangent vector \(X_p \in T_M(p)\) is in \(\Pi\) then the intersection curve \(M \cap \Pi\) is called the section curve determined by \(X_p\) and if the plane \(\Pi\) is orthogonal to \(T_M(p)\) then the section curve determined by \(X_p\) is called the *normal section curve* determined by \(X_p\).

Finally,
Definition 3. Let $M \in \mathbb{L}^3$ be a Lorentzian surface and X_P is a tangent vector to M at the point p. Let us denote a plane through X_P by π and the curvature center of the intersection curve of π and M, that is $M \cap \pi$, by C_i. The curve obtained by translating the curvature circle of the intersection curve $M \cap \pi$, at the point p, by the vector $\overrightarrow{C_iP}$ called conjugate curvature circle of the intersection curve $M \cap \pi$ at the point P.

2. THE MEUSNIER'S THEOREM FOR LORENTZIAN SURFACES

The main theorems are:

Theorem 1. Let M be a Lorentzian surface in \mathbb{L}^3 and $p \in M$, $X_p \in T_M(p)$. We assume that $X_p \in T_M(p)$ is not an asymptotic direction on M then

i) The locus of the curvature centers of all the non–null section curves determined by X_P with space–like second Frenet vectors is a pseudosphere

ii) The locus of the fourth vertex point of the parallelogram which constructed with one diagonal $[CC_i]$ and three vertices P, C, C_i is a pseudo–sphere where C_i and C are the curvature centers of any section curve and the normal section curve determined by X_p, respectively.

Theorem 2. Let M be a Lorentzian surface in \mathbb{L}^3 and $p \in M$, $X_P \in T_M(p)$. We assume that $X_p \in T_M(p)$ is not an asymptotic direction on M. Let the points C and C_i denote the curvature centers of the normal section curve and a section curve determined by X_p. Then,

i) All curvature circles of all the non–null section curves determined by X_P with space–like second Frenet vectors lie on a pseudo–sphere centered at the point C.

ii) All the conjugate curvature circles of all non–null section curves determined by X_P with time–like second Frenet vectors lie on a pseudo–sphere or a pseudo–hyperbolic space and the center of the pseudo–sphere or the hyperbolic space is the fourth vertex point of the parallelogram which is determined by the vertex points, p, C and C_i and one diagonal the line segment $[CC_i]$.

First of all we shall give the following Lemma.

Lemma 1. Let h be the second fundamental form of the Lorentzian surface M in \mathbb{L}^3. If X_p is a tangent vector to M and V and k_1 are
the second Frenet vector and the first curvature function of the section curve determined by \(X_p \), respectively. Then
\[
 k_2(0) \ < V_p, N_p > = - h \ (X_p, X_p) \tag{2.1}
\]
where \(N_p \) is the unit normal to \(M \) at the point \(p \).

Proof is the same as in the \(E^3 \), so we don't give it here, (see, [5]).

If we consider the curve mentioned in the Lemma 1. as the normal section curve determined by \(X_p \) then the equation (2.1) becomes
\[
 k_N(0) \ < V_p^N, N_p > = - h \ (X_p, X_p)
\]
where we denote the curvature of that normal section curve \(\alpha_N \) by \(k_N(0) \) thus we get
\[
 \begin{cases}
 h \ (X_p, X_p); \ V_p^N = - N_p; \text{ (that is, } \alpha_N \text{ is bending away from } N_p) \\
 - h \ (X_p, X_p); \ V_p^N = N_p; \text{ (that is, } \alpha \text{ is bending forward } N_p)
 \end{cases} \tag{2.2}
\]
where \(V_p^N \) denotes the second Frenet vector of \(\alpha \).

Now we use the term curvature radius which is the reciprocal of the curvature. So we conclude the following corollary.

Corollary: Let \(\alpha: I \longrightarrow M \) be a curve on the Lorentzian manifold \(M \) and \(X_p \) is a non-asymptotic tangent vector to \(M \). If \(g, g \) are the curvature radii of the normal section curve and a section curve determined by \(X_p \), respectively, then
\[
 < V_2, N > = \frac{g}{g_N} = \frac{k_N}{k_1} \text{ when } < V_2^N, N > > 0
\]
\[
 < V_2, N > = \frac{-g}{g_N} = \frac{-k_N}{k_1} \text{ when } < V_2^N, N > > 0
\]
where \(V \) is the second Frenet vector of \(\alpha \) and \(N \) is the unit normal vector field to \(M \) and \(k_1, k_N \) denote the curvatures of \(\alpha \) and the normal section curve determined by \(X_p \).

Finally we need the following two Lemmas for the proof of the Theorem 1 and the Theorem 2.

Lemma 2. Let \(A, B \in L^3 \) and the vector \(\overrightarrow{AB} \) is space-like. Then the points \(p \) on the condition that
are lies on a sphere $S^2_7(r)$, where the radius r is a constant and depends on the points A and B.

Proof: We choose an orthonormal basis $\{e_0, e_1, e_2\}$ for L^3 such that e_0 is a unit time-like vector. Thus, for any point $p \in L^3$ we have the following coordinate expression

$$\vec{OP} = x_0e_0 + x_1e_1 + x_2e_2$$

and we can identify the point p and the vector \vec{OP} as well as

$$x_0e_0 + x_1e_1 + x_2e_2$$

and (x_0, x_1, x_2). Now, take

$$A = (a_0, a_1, a_2)$$
$$B = (b_0, b_1, b_2)$$
$$P = (x_0, x_1, x_2)$$

so

$$\langle \vec{AB}, \vec{AB} \rangle = -(b_0 - a_0)^2 + (b_1 - a_1)^2 + (b_2 - a_2)^2 > 0.$$ \text{(2.3)}

If the point p satisfies the condition of the Lemma then; a direct computation shows that;

$$(x_0 - (1/2)(a_0 + b_0))^2 + (x_1 - (1/2)(a_1 + b_1))^2 + (x_2 - (1/2)(a_2 + b_2))^2 = c$$

where

$$c = (1/4) (- (b_0 - a_0)^2) + (b_1 - a_1)^2 + (b_2 - a_2)^2) + (1/2) (a_0 + b_0)^2$$

and because of (2.3) the constant c is positive. Thus what we get is that the point p lies on a sphere $S^2_1(\sqrt{c})$.

Lemma 3: Let M be a Lorentzian surface in L^3. If $p \in M$, $X_p \in T_M(p)$ and z is a section curve determined by X_p such that the second Frenet vector V_2 of z is time-like then the vector \vec{PQ} is orthogonal to the vector \vec{PC}, where C is the curvature center of z at the point p and Q is the fourth vertex point of the parallelogram determined by the vertices p, C_i and C such that $[PQ]$ and $[CC_i]$ are diagonal s of the parallelogram and the point C is the curvature center of the normal section curve determined by X_p at the point p. Furthermore PQ is a space like vector (Figure. 1).
Proof:

Let k_1 and k_N denote the first curvature of the section curve α and the normal section curve determined by X_p, respectively. So, in the case of $\langle V_2^N, N \rangle > 0$, we have the following

$$C_1 = p + \frac{1}{k_1} V_2$$

$$C = p + \frac{1}{k_N} N_p$$

where N_p is the unit normal to M at the point p (Figure. 1) (It should be noticed that if $\langle V_2^N, N \rangle < 0$ then we have to take $N_p = -V_2^N$ that is,

$$C = p - \frac{1}{k_N} N_p$$

thus
\[\vec{PQ} = \frac{1}{k_1} V_2 + \frac{1}{k_N} N_p \]

and

\[<\vec{PQ}, \vec{PC}_i> = \frac{1}{k_1^2} <V_2, V_2> + \frac{1}{k_1} \frac{1}{k_N} <N_p, V_2> \]

since \(V_2 \) is a time–like curve and

\[<N_p, V_2> = \frac{k_N}{k_1} \]

by the corollary of Lemma 1 so what we get is that

\[<\vec{PQ}, \vec{PC}_i> = 0 \]

or

\[\vec{PQ} \perp \vec{PC}_i. \]

For the second assertion of the Lemma, since \(\vec{PC}_i \) is a time–like vector and we proved that \(\vec{PV} \perp \vec{PC}_i \) as above, so \(\vec{PQ} \) is a space–like vector that completes the proof.

Proof of the Theorem 1. We will take the figure 2 into account and assume that \(<V_2^N, \ N_p> > 0 \), thus

\[\vec{PC} = \frac{1}{k_N} N_p. \]

In the case of \(<V_2^N, \ N_p> <0 \), we have to take the vector \(\vec{PC} \) as \(-(1/k_N) N_p \). We would not deal with this possibility because, it makes no difference between the proofs that involving the signature of the number \(<V_2^N, \ N_p> \). So we proceed the proof as follows

1) If \(V_2 \) is space–like then by the corollary we obtain

\[<gV_2 - g_N N_p, \ gV_2> = g^2 - g g_N (g / g_N) = 0. \]

On the other hand

\[\vec{PC}_i = gV_2 \]

\[\vec{CC}_i = gV_2 - g_N N_p \]

so

\[<\vec{PC}_i, \vec{CC}_i> = 0 \]
that completes the proof of the assertion i) because of the Lemma 2 (see. Fig. 1).

ii) If the second Frenet vector V_2 is time–like then;

$$\overrightarrow{PQ} = \overrightarrow{PC} + \overrightarrow{PC_1} = gV_2 + g_{\text{N}}N_p$$

$$\overrightarrow{CQ} = \overrightarrow{CP} + \overrightarrow{PQ} = gV_2$$

and by the corollary we obtain

$$<gV_2 + g_{\text{N}}N_p, gV_2> = -g(g_{\text{N}}/g_{\text{N}})$$

so

$$<\overrightarrow{PQ}, \overrightarrow{OC}> = 0$$

which completes the proof for the assertion ii) because of the Lemma 2.

Proof of the Theorem 2: Since C_i and C are curvature centers, we can write
\[C_i = p + \frac{1}{k_1} V_2 \]

and

\[C = p + \frac{1}{k_N} N_p \]

where, \(k_1 \) and \(k_N \) are first curvature function of the section and the normal section curve determined by \(X_p \). \(V_2 \) denotes the second Frenet vector of the section curve and \(N_p \) is the unit normal to \(M \) at the point \(p \).

On the other hand, \(X_p \) is orthogonal to both \(\overrightarrow{PC} \) and \(\overrightarrow{PC_i} \) so the vector \(\overrightarrow{CC_i} \) orthogonal to the vectors \(X_p \) and \(\overrightarrow{PC_i} \) (figure. 3). Thus \(\overrightarrow{CC_i} \) orthogonal to the plane spanned by the vectors \(\overrightarrow{PC_i} \) and \(X_p \) at the point \(p \).

![Figure. 3](image)

(i) Let \(Z \) be a point that lies on the curvature circle at the point \(p \) of the section curve determined by \(X_p \). Since \(\overrightarrow{CC_i} \) is orthogonal to the plane spanned by \(\overrightarrow{PC_i} \) and \(X_p \) and
\[
\vec{ZC}_1 \in S_p \{X_p, \vec{PC}_1\}
\]

thus

\[
< \vec{ZC}, \vec{ZC} > = < \vec{PC}_1, \vec{PC}_1 > + < \vec{C}_1, \vec{C}_1 > . \tag{2.4}
\]

On the other and:

\[
\vec{PC} = \vec{PC}_1 + \vec{C}_1 \vec{C}
\]

and so

\[
< \vec{PC}, \vec{PC} > = < \vec{PC}_1, \vec{PC}_1 > + < \vec{C}_1 \vec{C}, \vec{C}_1 \vec{C} > + 2 < \vec{PC}_1, \vec{C}_1 \vec{C} >
\]

since \(\vec{C}_1 \vec{C} \perp \vec{PC}_1 \) thus the right hand side of the above equation is the same as the right hand side of the equation (2.4) so

\[
< \vec{PC}, \vec{PC} > = < \vec{ZC}, \vec{ZC} >
\]

which means that, the point Z lies on the pseudo–sphere centered at the point C. Since Z is arbitrary that completes the proof of the assertion (i).

(ii) We will take the figure. 4 into account so we proceed the proof as follows

\[\text{Figure. 4}\]
Let Z be a point that lies on the special translated curvature circle of the section curve at the point p determined by X_p.

By Lemma 3; \vec{PQ} is orthogonal to $\vec{PC_i}$. Since \vec{PQ} is a vector in the plane spanned by N_p and V_2 then \vec{PQ} is orthogonal to the vectors V_2 and X_p so we obtain

$$\langle \vec{PQ}, \vec{PZ} \rangle = 0$$

so we get

$$\langle \vec{QZ}, \vec{QZ} \rangle = \langle \vec{QP}, \vec{QP} \rangle + \langle \vec{PZ}, \vec{PZ} \rangle.$$ \hspace{1cm} (2.6)

By the Definition 3, there exists a point Y on the curvature circle at the point p determined by X_p, such that

$$\vec{YZ} = \vec{C_iP}$$

thus

$$\vec{C_iY} = \vec{PZ}.$$ \hspace{1cm} (2.7)

Taking (2.7) into (2.6) we get

$$\langle \vec{QZ}, \vec{QZ} \rangle = \langle \vec{QP}, \vec{QP} \rangle + \langle \vec{C_iY}, \vec{C_iY} \rangle$$

and since Y is a point on the curvature circle centered at C_i then

$$\langle \vec{C_iY}, \vec{C_iY} \rangle = \langle \vec{PC_i}, \vec{PC_i} \rangle$$

so by (2.8) we obtain

$$\langle \vec{QZ}, \vec{QZ} \rangle = \langle \vec{QP}, \vec{QP} \rangle + \langle \vec{PC_i}, \vec{PC_i} \rangle$$

we recall that \vec{QP} is a space-like, $\vec{PC_i}$ is a time-like so (2.9) can be written as the following form

$$\langle \vec{QZ}, \vec{QZ} \rangle = \| \vec{QP} \|^2 - \| \vec{PC_i} \|^2$$
which completes the proof of the assertion (ii) since the point \(Z \) are lies on a pseudo–sphere or on a pseudo–hyperbolic space according to the sign of the number

\[
\| \overrightarrow{QP} \|^2 - \| \overrightarrow{PC_i} \|^2.
\]

REFERENCES

