THE CHARACTERIZATION OF SCHWARZ THEOREM AND UNIT DISCS

MUHAMMET KAMALİ — MUSTAFA BAYRAKTAR

Atatürk University, Faculty of Sciences and Arts, Department of Mathematics, Erzurum, TURKEY.

(Received Nov. 30, 1993; Accepted July 17, 1994)

ABSTRACT

Let \(D = \{ z \in \mathbb{C} : |z| \leq r \} \) be a set and \(A(D) \) be an algebra of bounded analytic functions on \(D \). In this paper taking complex algebra \(R \), we gave the characterization of Schwarz theorem. In the special case \(r = 1 \), we obtained the characterization of Schwarz lemma. Taking \(a \in R \) that satisfies some conditions we gave algebraic characterization of conformal mapping from \(D \) to \(\mathbb{U} \), where \(\mathbb{U} = \{ w \in \mathbb{C} : |w| \leq 1 \} \), and investigate the case \(r = 1 \).

INTRODUCTION

This paper presents a solution to problem in subject of rings of analytic functions. In late 1940's, it was shown that two domains; \(D_1 \) and \(D_2 \) in the complex plane, are conformally equivalent iff the rings \(B(D_1) \) and \(B(D_2) \) of all bounded analytic functions defined on them are algebraically isomorphic. Let \(R \) be a ring. It is well known that if \(R \) is isomorphic with the ring of bounded analytic functions on an annulus \(A = \{ z \in \mathbb{C} : \rho_1 < |z| < \rho_2 \} \), where \(\rho_1 \) and \(\rho_2 \) are unknown, then it deduces the number \(\rho_1 / \rho_2 \) from the ring \(R \) [2].

In our study we have taken the known ring and given some algebraic characterizations.

ALGEBRAIC CHARACTERIZATIONS

Let \(\phi \) be an isomorphism mapping \(B(D) \) onto \(R \). We will denote elements of \(B(D) \) by \(f, g, f, \ldots \) and elements of \(R \) by \(a, b, c, \ldots \). Let \(e \) and \(1 \) be multiplicative identity of \(R \) and \(B(D) \), respectively. Thus, \(1 \in B(D) \) is the function identically equal to \(1 \) on \(D \). Since \(\phi : B(D) \rightarrow R \) is an isomorphism, \(\phi(1) = e \). Furthermore \(\phi(n1) = ne \), so that \(\phi(\pm (m/n) \cdot 1) = \pm (m/n) e \). \(-e \) has two square roots in \(R \), one is
the image of \(i.1 \), the other is the image of \(-i.1\). It is algebraically impossible to distinguish between these, since \(R \) has an automorphism which takes one into the other (corresponding to the mapping \(f \rightarrow \bar{f} \in B(\mathcal{D}) \)). Thus, we choose one root of \(-e\) and make it which correspond to \(i.1\); denote it as \(ie \).

Henceforth, we will denote the complex number field by \(C \) and the complex rational number field by \(C_r \). Where a complex number, both real and imaginary parts are real rationals, is called a complex rational number. Clearly, \(C_r \) and \(C \) are subrings of \(B(\mathcal{D}) \).

Lemma 2.1. For each \(z \in C, \mathcal{O}(z) = z \) (or \(\bar{z} \)).

Proof: If \(z \in C_r \), there are the rational numbers \(r_1 \) and \(r_2 \) such that \(z = r_1 + ir_2 \). Since \(\mathcal{O}(1) = e \) and \(\mathcal{O}(i) = i(0r - i) \), we get \(\mathcal{O}[(r_1 + ir_2).1] = r_1e + r_2ie \) (or \(r_1e - r_2ie \), \([3], [4]\)).

Lemma 2.2. For each real number \(c, \mathcal{O}(c1) = ce \).

Proof: If \(c \) is a rational number, by the Lemma (2.1), \(\mathcal{O}(c1) = ce \). If \(c \) is an irrational number, for each rational number \(c, c - r \neq 0 \).

Thus there exist \((c - r)^{-1} = \frac{1}{c - r} \). Then \(\mathcal{O}[(c - r).1] = \mathcal{O}(c1) - re \) and \(\mathcal{O}\left[\left(\frac{1}{c-r}\right)1\right] = \frac{e}{\mathcal{O}(c1)-re} \). Therefore \(\mathcal{O}(c1) = ce \).

Corollary 2.3. If \(c \in C, \mathcal{O}(c1) = ce, [2] \).

Lemma 2.4. Let \(f \in B(\mathcal{D}) \) and let \(\mathcal{R}_f \) be the closed range of \(f \). Then \(\lambda \in \mathcal{R}_f \) iff \(f - \lambda 1 \) has no inverse in \(B(\mathcal{D}) \).

Proof: If \(\lambda \in \mathcal{R}_f \) there is \(z_0 \in \mathcal{D} \) such that \(f(z_0) = \lambda \). Then \((f-\lambda 1)(z_0) = 0 \). Hence \(f - \lambda 1 \) has no inverse in \(B(\mathcal{D}) \). Now we suppose that \(f - \lambda 1 \) has no inverse in \(B(\mathcal{D}) \). Then at least for one point \(z_0 \in \mathcal{D}, (f - \lambda 1)(z_0) = 0 \). If follows that \(f(z_0) = \lambda \), i.e. \(\lambda \in \mathcal{R}_f \).

Lemma 2.5. \(\lambda \in \mathcal{R}_f \) iff \(\mathcal{O}(f) - \lambda e \) has no inverse in \(R \).

Proof: If \(\lambda \not\in \mathcal{R}_f \), \(f - \lambda 1 \) has no inverse in \(B(\mathcal{D}) \) by Lemma 2.4. Since \(\mathcal{O} \) is an isomorphism, \(\mathcal{O}(f - \lambda 1) = \mathcal{O}(f) - \lambda e \) has no inverse in \(\mathcal{R} \). [1]

Let \(\sigma(f) \) and \(\sigma(a) \) be spectrum of \(f \in B(\mathcal{D}) \) and \(a \in R \) respectively. If

\[\rho(a) = \sup \{ |\lambda| : \lambda \in \sigma(a) \}, \]
then \(\rho(a) \) is also the maximum modulus (Hereinafter abbreviated MM) of \(\varphi^{-1}(a) \).

In this paper, we always consider complex algebra. Now we give our theorem connected with algebraic characterization.

Theorem 2.6. Let \(R \) be a complex algebra, \(a, b, c \in R \) and \(\varphi : B(\bar{D}) \to R \) be a \(C \)-isomorphism. If \(\varphi^{-1}(b) = z \), then \(\rho(a) = M \) algebraically characterizes Schwarz Theorem.

Proof: Let \(\varphi^{-1}(c) = \varphi(z) \), where \(b, c \in R \) and \(a = b.c. \) Then \(\varphi^{-1}(a) = f(z) \). Since \(\varphi^{-1}(a) = \varphi^{-1}(b) \varphi^{-1}(c) \), we obtain \(f(z) = z \varphi(z) \). We can write from here

\[
\varphi(z) = \frac{f(z)}{z},
\]

for \(z \neq 0 \).

For \(\varphi(z) \) to be in \(B(\bar{D}) \), \(f(z) \) must be zero at \(z = 0 \), i.e. \(f(0) = 0 \). Because, as \(f(0) = 0 \) the point \(z = 0 \) is a removable singular point for the function \(\varphi(z) \). Hence, for each \(z, \varphi(z) \in B(\bar{D}) \). By the maximum modulus principle in a disk that concentric with \(\bar{D} \) and has a radii \(k < r \),

\[
|\varphi(z)| \leq \frac{M}{k},
\]

because \(\rho(a) = \text{MM} (\varphi^{-1}(a)) = M \). It follows from that for \(k \to r \)

\[
|\varphi(z)| \leq \frac{M}{r}
\]

that is,

\[
|f(z)| \leq \frac{M}{r} |z|.
\]

If we take \(M = 1 \) and \(r = 1 \) as a result of Theorem 2.6, we obtain an algebraic characterization of Schwarz Lemma. More clearly,

Corollary 2.7. Let \(R \) be complex algebra \(a, b, c \in R \) and \(\varphi : B(\bar{U}) \to R \) be \(C \)-isomorphism. If \(\varphi^{-1}(b) = z \), then \(\rho(a) = 1 \) algebraically characterizes Schwarz Lemma.

Another result of Theorem 2.6 is the following.

Corollary 2.8. Let \(B(D) \) be a complex algebra of the bounded analytic functions on \(D \) and \(f \in B(D) \) be schlicht. Furthermore, suppose that \(f(0) = 0 \) and \(\text{MM}(f) = 1 \). Then,
\[f(z) = \frac{1}{r} \exp i\theta \cdot z \]

where \(\mathring{D} = \{ z \in \mathbb{C} : |z| \leq r \} \).

Proof: Since \(w = f(z) \) schlicht, \(z = f^{-1}(w) \in B(\mathring{U}) \). Then, we deduce

\[|f(z)| \leq \frac{M}{r} |z| \]

by the Schwarz Theorem.

Since \(f \) is the function from \(\mathring{D} \) to \(\mathring{U} \), we obtain

\[|f(z)| \leq \frac{1}{r} |z| \]

for \(M = 1 \) and hence \(r |w| \leq |z| \).

Conversely, since the mapping \(z = f^{-1}(w) \) maps the closed unity ball to \(\mathring{D} \), \(M = r \) and \(r = 1 \). Thus,

\[|f^{-1}(w)| \leq \frac{r}{1} \cdot |w| \]

and from here we get \(|z| \leq r |w| \). We find \(r |w| = |z| \) from both inequalities or

\[|\frac{w}{z}| = \frac{1}{r} \]

If follows for that

\[f(z) = \frac{1}{r} \exp i\theta \cdot z \]

The mapping \(f(z) = \frac{1}{r} \exp i\theta \cdot z \) maps \(\mathring{D} \) to \(\mathring{U} \) such that \(f(0) = 0 \).

Now we will give an algebraic characterization of \(f \) which maps conformally \(\mathring{D} \) onto \(\mathring{U} \) such that \(f(z) = 0 \), where \(z \) is interior point of \(\mathring{D} \).

We need the following Lemma.

Lemma 2.9. Let \(z \in \mathring{D} \) be. Suppose that \(f \in B(\mathring{D}) \) satisfies the following conditions.
a) \(f(z) = 0 \),

b) \(\text{MM}(f) = 1 \),

c) \(f \) is schlicht.

Then,

\[
f(z) = \lambda \frac{z - \alpha}{r^2 - \bar{z}z}, \tag{2.9.1}
\]

where \(|\lambda| = r \) and \(\bar{D} = \{ z \in \mathbb{C} : |z| \leq r \} \).

Proof: \(I_\alpha = \{ f \in B(\bar{D}) : f(\alpha) = 0 \} \) is the maximal ideal of \(B(\bar{D}) \). \(I_\alpha \) is generated by \(h(z) = z - \alpha \), i.e., \(I_\alpha = \langle z - \alpha \rangle \). The function that we are looking for must be in \(I_\alpha \). If \(\alpha = 0 \), by Corollary 2.8 \(f(z) = \lambda \frac{z}{r^2} \). If \(\alpha \neq 0 \), for any \(z \) in \(\bar{D} \) \(\text{MM}(z - \alpha) \neq 1 \). Therefore \(f(z) \neq z - \alpha \). If \(f(z) = (z - \alpha) g(z) \), \(f(\alpha) = 0 \) and \(\text{MM}(f) = 1 \), then \(g(z) \)

must be \(\frac{\lambda}{r^2 - \bar{z}z} \), where \(r = |\lambda| \). Thus

\[
f(z) = \lambda \frac{z - \alpha}{r^2 - \bar{z}z},
\]

where \(r = |\lambda| \).

Furthermore if \(f \) is schlicht, \(f(\alpha) = 0 \) and \(\text{MM}(f) = 1 \), then this function must be in the form of (2.9.1), [5].

Theorem 2.10. Let \(R \) be any algebra such that \(\varnothing \) is an isomorphism from \(B(\bar{D}) \) to \(R \). Furthermore, suppose that the following conditions are satisfied for some \(a \in R \).

a) For each \(\lambda \in \sigma(a) = \bar{U} \), there is only one point \(z_0 \).

b) For each \(z \in C, < b - \bar{z}e > \) is a maximal ideal of \(R \). Furthermore, \(\varnothing^{-1}(b) = z \) and \(a \in < b - \bar{z}e > \), where \(b \in R \).

c) \(\varnothing(a) = \text{MM}(\varnothing^{-1}(a)) = 1 \).

Then \(\varnothing^{-1}(a) \) is a conformally mapping from \(\bar{D} \) to \(\bar{U} \) and

\[
\varnothing^{-1}(a) = \lambda \frac{z - \alpha}{r^2 - \bar{z}z},
\]

where \(|\lambda| = r \).
Proof: Since \(a \in < b - xe > \), there is an element \(c \in R \) such that \((b - xe) c = a \). Since \(\sigma \) is isomorphism, we can write \(\sigma^{-1}(a) = \sigma^{-1}(b - xe) \). \(\sigma^{-1}(c) \) and \(\sigma^{-1}(a) = \{ \sigma^{-1}(b) - \sigma^{-1}(xe) \} \sigma^{-1}(c) \). Thus we find

\[
\sigma^{-1}(a) = (z - \alpha) \sigma^{-1}(c).
\]

By the Lemma 2.9, MM \((\sigma^{-1}(a)) = 1 \) and hence

\[
\sigma^{-1}(c) = \frac{\lambda}{r^2 - \bar{e}z}.
\]

Clearly, \(\sigma^{-1}(c) \in B(D) \). We obtain

\[
c = \frac{\sigma(\lambda)}{\sigma(r^2) - \sigma(\bar{e}z)} = \frac{\lambda e}{r^2 e - \bar{e}bc}
\]

from the equality and so \(c \in R \). Thus

\[
a = (b - xe) \sigma \left(\frac{\lambda e}{r^2 e - \bar{e}bc} \right) \in (b - xe)
\]

and we deduce the mapping

\[
\sigma^{-1}(a) = \lambda \frac{z - \alpha}{r^2 - \bar{e}z}.
\]

It is well known that this is the mapping from \(D \) onto \(U \). At the same time, the mapping \(\sigma^{-1}(a) \) is unique. Because, \(\lambda_0 \in R \sigma^{-1}(a) \), by \(\lambda_0 \in \sigma(a) \). Since each a point \(R \sigma^{-1}(a) \) correspond to unique \(z_i \) by the Lemma 2.4 and (a), \(\sigma^{-1}(a) \in B(D) \) is one-to-one. Since \(\sigma \) is an isomorphism and \(< b - xe > \) is maximal principal ideal in \(R \), \(\sigma^{-1}(b - xe) \) is a maximal principal ideal in \(B(D) \). This maximal principal ideal is generated by the \(\sigma^{-1}(b) - \sigma^{-1}(xe) = z - \alpha \). Then \(\sigma^{-1}(a) \in < z - \alpha > \) by (b). \(\sigma^{-1}(a) \) is schlicht. Thus

\[
\sigma^{-1}(a) = \lambda \frac{z - \alpha}{r^2 - \bar{e}z},
\]

by Lemma 2.9.

Corollary 2.11. Let \(R \) be any algebra and \(\sigma : B(U) \to R \) be a \(C \)-isomorphism. Furthermore suppose that the following conditions hold.

a) For each \(\lambda_0 \in \sigma(a) = U \), there is an unique \(z_0 \in U \).

b) For each \(\alpha \in C \), \(< b - xe > \) is maximal ideal of \(R \), where \(b \in R \), \(\sigma^{-1}(b) = z \) and \(a \in < b - xe > \).
ON SCHWARZ THEOREM AND UNIT DISCS

c) $\varphi(a) = \text{MM} \left(\varphi^{-1}(a) \right) = 1$.

Then $\varphi^{-1}(a)$ is conformally mapping from \bar{U} onto U and

$$\varphi^{-1}(a) = \lambda \frac{z - \alpha}{1 - \bar{\alpha}z}, \quad (|\lambda| = 1).$$

Proof: This corollary is the special case of Theorem 2.10 for $r = 1$.

REFERENCES

