RELATIONS BETWEEN THE SCALAR CURVATURES OF SUBMANIFOLDS WITH CONSTANT CURVATURE

ABDULLAH ÖZEL

Department of Mathematics, Firat University, 23119 Elazığ, TÜRKİYE

(Received Sep. 11, 1991; Revised Oct. 13, 1993; Accepted Oct. 15, 1993)

ABSTRACT

In this paper, the relations between the scalar curvatures of n-dimensional submanifold (hypersurface) \(N \), with zero curvature immersed in an \((n+1)\) dimensional submanifold \(\overline{N} \) with zero curvature in \(E^m \) \((m>n+1)\), have been investigated and some results have been obtained in terms of scalar, Gaussian and mean curvature of the submanifolds \(N \) and \(\overline{N} \).

INTRODUCTION

We shall assume throughout that all manifolds, maps, vector fields, etc. are differentiable of class \(C^\infty \).

Suppose that \(\overline{N} \) is an \((n+1)\)-dimensional submanifold of the Euclidean space \(E^m \) \((m>n+1)\), and \(N \) is an \(n \)-dimensional hypersurface immersed in an \((n+1)\)-dimensional submanifolds \(\overline{N} \) with constant curvature \(K \). Let \(p \) be a point of \(N \) and \(X^i \) the local coordinates around \(p \) in \(N \) such that \(X_i=\partial_i \) form an orthonormal basis of \(T_p \) \((N) \) at the point \(p \). \(\xi \) be orthonormal normal vector field of \(N \) in \(\overline{N} \), \(X \) and \(Y \) be two linear independent vectors at the point \(p \) and \(\gamma \) \((X,Y)\) be the plane section spanned by \(X \) and \(Y \). On the other hand, \(K(\gamma) \) is the constant for all plane sections \(\gamma \) in the tangent space \(T_p(N) \) at \(p \) where \(p \in N \), then \(N \) is a hypersurface with the constant curvature. The standard Riemann connection of \(E^m \) and Riemann connections of \(\overline{N} \) and \(N \) are denoted by

\[\tilde{D}, \mathring{D} \text{ and } D, \text{ respectively.} \]

The Weingarten map \(L \) of \(N \) in \(\overline{N} \) is given by

\[\mathring{D}_X \xi = L(X), \quad A \ X \in N_p \]

and \(\det L \) is the Gauss curvature at the point \(p \) of the hypersurface \(N \) of \(\overline{N} \).

(1.1)
Definition 1.1. Let \(M \) be an \(n \)-dimensional submanifold of the Euclidean space \(E^m \). Then
\[
\alpha : \mathcal{X}(M) \times \mathcal{X}(M) \to \mathcal{X}(M) \quad
\]
\[
(Y, Z) \to \alpha(Y, Z) = \sum_{j=1}^{m-n} \omega^j(Y, Z) \zeta_j
\]
(1.2)
is called second fundamental form of \(M \). Where \(\omega^j \) denotes the coefficients of the second fundamental vector field in the direction of \(\zeta_j \), that is,
\[
\alpha(Y, Z) = \langle \alpha(Y, Z), \zeta_j \rangle.
\]
[1]
To be \(Y, Z \in \mathcal{X}(N) \), Let \(\alpha_1(Y, Z) \) be the second fundamental form of \(\bar{N} \) in \(E^m \), then we have
\[
\overline{D}_Y Z = D_Y Z + \alpha_1(Y, Z)
\]
(1.3)
and if \(\alpha_1(Y, Z) \) is the second fundamental form of \(N \) in \(E^m \), then we have
\[
\overline{D}_Y Z = D_Y Z + \alpha_2(Y, Z).
\]
(1.4)
If \(Y \) and \(Z \) are vector fields of \(N \), then we have
\[
\overline{D}_Y Z = D_Y Z + \alpha_3(Y, Z).
\]
(1.5)
Here (1.5) is the Gauss equation of \(N \) in \(\bar{N} \), where \(\alpha_3(Y, Z) \) is the second fundamental form \(N \) in \(\bar{N} \).

If we consider (1.5) and
\[
\alpha_3(Y, Z) = -\langle L(Y), Z \rangle, \zeta
\]
(1.6)
we obtain
\[
\overline{D}_Y Z = D_Y Z - \langle L(Y), Z \rangle, \zeta
\]
(1.7)
and using (1.7) in (1.3) we have
\[
\overline{D}_Y Z = D_Y Z - \langle L(Y), Z \rangle, \zeta + \alpha_1(Y, Z).
\]
(1.8)
Moreover, if we consider (1.4) and (1.8) then we have
\[
\alpha_2(Y, Z) = -\langle L(Y), Z \rangle, \zeta + \alpha_1(Y, Z).
\]
(1.9)
Let \(X \) and \(Y \) be orthonormal vectors at a point \(p \) and \(\gamma(X, Y) \) be the plane spanned by \(X \) and \(Y \). The sectional curvature \(K(\gamma) \) for \(\gamma(X, Y) \) is defined by
\[
K(\gamma) = K(X, Y, X, Y)
\]
or
\[
K(\gamma) = \langle X, R(X, Y) \rangle, Y \rangle
\]
where \(R \) is the curvature tensor.
It is easy to see that $K(\gamma)$ is independent of the choice of an orthonormal basis. So, we may give the following definition.

Definition 1.2. If $K(\gamma)$ is a constant for all plane in the tangent space $T_p(M)$ at p for all points $P \in M$, then M is called a space of constant curvature [2].

Let M be an n-dimensional manifold immersed in an m-dimensional Riemann manifold N of constant curvature K, p be a point of M and X^i the local coordinates around p in M such that $X_i = \partial_i$ form an orthonormal basis of $T_p(M)$ at p and also ζ_X be the orthonormal normal vector field of M. If we substitute

$$\zeta(X_i, X_j) = \alpha X(X_i, X_j) \zeta_X = \alpha^i_{ij} \zeta_X$$

then, we have $\alpha^i_{ji} = \alpha^i_{ij}$. Let $\langle \alpha \rangle$ denote the length of the second fundamental form α, that is

$$\langle \alpha, \alpha \rangle = \langle \alpha \rangle^2 = \alpha^i_{ji} \alpha^j_{ii},$$

where $\alpha^i_{ji} = g^{iis} \alpha^s_{js}$.

Definition 1.3. If E_1, E_2, \ldots, E_n are local orthonormal vector fields, then

$$R(X,Y) = \sum_{i=1}^{n} g(K(E_i,X)Y, E_i)$$

$$= \sum_{i=1}^{n} k(E_i,Y, E_i, X)$$

defines a global tensor field R of type $(0,2)$ with local components

$$K_{ji} = K_{ij} = g^{is} K_{jis}.$$

Moreover, from the tensor field R we can define a global scalar field

$$r = \sum_{i=1}^{n} R(E_i, E_i)$$

with local components

$$r = g^{ij} K_{ji}.$$

The tensor field R and the function r are called the Ricci tensor and scalar curvature.

From the Gauss equation, we find that the scalar curvature r and the mean curvature vector H satisfy the following relation.
\begin{align*}
r &= n^2 \|H\|^2 - <z>^2 + n(n-1)K. \quad [2] \\

\textbf{Theorem 1.1.} Let } r \text{ be the scalar curvature of } n\text{-dimensional submanifold } N \text{ with zero curvature and } \tilde{r} \text{ be the scalar curvature of } (n+1)\text{-dimensional submanifold } \tilde{N} \text{ with zero curvature in } E^m. \text{ Then, the relation between the scalar curvature of } N \text{ and the scalar curvature of } \tilde{N} \text{ is given by }

\begin{align*}
\tilde{r} - r &= (n+1)^2 \|H\|^2 - n^2 \|H\|^2 - 2 \sum_{i=1}^{n} <x_1(e_i, \zeta), x_1(e_i, \zeta) > \\
&= <x_1(\zeta, \zeta), x_1(\zeta, \zeta)> - (H^0)^2,
\end{align*}

\text{in } E^m, \text{ where } (H^0)^2 = \sum_{i=1}^{n} \lambda_i^2 \text{ and } \lambda_i = <L(e_i), e_i>.

\textbf{Proof:} By the hypothesis, we have

\[S_p \{e_1, e_2, \ldots, e_n, e_{n+1} = \zeta \} = \chi(N) \]

and

\[S_p \{e_1, e_2, \ldots, e_n \} = \chi(N). \]

Furthermore, since } K=0 \text{ for the scalar curvature of } M \text{ at the point } p \in M, \text{ by hypothesis from the following equation

\[r = n^2 \|H\|^2 - <z>^2 + n(n-1)K, \]

we have

\[r = n^2 \|H\|^2 - <z>^2. \quad (1.10) \]

If we consider (1.9), we have

\[z_2(e_i, e_j) = -<L(e_i), e_j> + z_1(e_i, e_j). \]

From (1.2), it follows that

\[<z_2>^2 = \sum_{i=1}^{n} <z_1(e_i, e_j), z_1(e_i, e_j) >. \]

Thus,

\[<z_2>^2 = \sum_{i=1}^{n} <z_1(e_i, e_j), z_1(e_i, e_j) > + \sum_{i=1}^{n} \lambda_i^2, \text{ where } \lambda_i = <L(e_i), e_i>. \quad (1.11) \]

In the same way, from (1.2), we have
\[<\alpha_1>^2 = \sum_{i,j=1}^{n+1} <\alpha_1(e_i,e_j), \alpha_1(e_i,e_j)> \]
or
\[<\alpha_1>^2 = \sum_{i=1}^{n} <\alpha_1(e_i,e_i),\alpha_1(e_i,e_i)> + 2 \sum_{i=1}^{n} <\alpha_1(e_i,\zeta),\alpha_1(e_i,\zeta)> + <\alpha_1(\zeta,\zeta),\alpha_1(\zeta,\zeta)> \]
(1.12)
since \(N\) and \(\overline{N}\) are manifolds with zero curvature in \(E^m\) and using the equation (1.10), (1.11) and (1.12) we obtain
\[\hat{r} - r = (n+1)^2 \|\mathbf{H}\|^2 - n^2 \|\mathbf{H}\|^2 - 2 \sum_{i=1}^{n} <\alpha_1(e_i,\zeta),\alpha_1(e_i,\zeta)> - <\alpha_1(\zeta,\zeta),\alpha_1(\zeta,\zeta)> - (H_0)^2. \]
(1.13)
This completes the proof.

Corollary 1.1. If the scalar curvature of \(N\) is zero and if \(\zeta\) is asymptotic in \(\overline{N}\), then
\[\hat{r} = (n+1)^2 \|\mathbf{H}\|^2 - 2 \sum_{i=1}^{n} <\alpha_1(e_i,\zeta),\alpha_1(e_i,\zeta)> - (H_0)^2. \]

Proof: Since the scalar curvature of \(N\) is zero and \(\zeta\) is asymptotic in \(\overline{N}\) the proof is trivial by (1.10) and (1.13).

Corollary 1.2. If the scalar curvature of \(\overline{N}\) is zero, then
\[r = n^2 \|\mathbf{H}\|^2 + 2 \sum_{i=1}^{n} <\alpha_1(e_i,\zeta),\alpha_1(e_i,\zeta)> + (H_0)^2. \]

Proof: Since the scalar curvature of \(\overline{N}\) is zero, the proof is trivial by (1.10) and (1.13).

Corollary 1.3. Let \(p \in \overline{N}\). If \((e_i)_p\) and \(\zeta_p\) are conjugate two tangent vectors and if \(\zeta_p\) is asymptotic, then
\[\hat{r} - r = (n+1)^2 \|\mathbf{H}_p\|^2 - n^2 \|\mathbf{H}\|^2 - (H_0)^2. \]

Proof: Since, \((e_i)_p\) and \(\zeta_p\) are conjugate and \(\zeta_p\) is asymptotic, then the requirement results is obtained.

From definition 1.1 we write
\[\alpha_1(e_i, e_i) = \sum_{k=1}^{m-n} x^k(e_i, e_i) \zeta_k. \]

For \(\zeta_k \in \mathcal{Z}(N) \), we have
\[< \alpha_2(e_i, e_i), \zeta_k > = x^k(e_i, e_i) \]
or
\[\alpha_2(e_i, e_i) = \sum_{k=1}^{m-n} < \alpha_2(e_i, e_i), \zeta_k > \zeta_k. \] (1.14)

Denoting the metric connection of the normal bundle \(N \) in \(E^m \) by \(D^\perp \), we write for \(e_1 \in \mathcal{Z}(N) \)
\[\tilde{D} e_i \zeta_k = - A \zeta_k(e_i) + D^\perp e_i \zeta_k \]
or
\[< \tilde{D} e_i \zeta_k, e_i > = < - A \zeta_k(e_i), e_i >. \]

Then we get
\[< \alpha_2(e_i, e_i), \zeta_k > = < A \zeta_k(e_i), e_i >. \] (1.15)

Thus from (1.14) and (1.15) we have
\[\alpha_2(e_i, e_i) = \sum_{k=1}^{m-n} < A \zeta_k(e_i), e_i > \zeta_k \] (1.16)

and
\[\alpha_2(e_i, e_j) = \sum_{i=1}^{m-n} \sum_{j=1}^{m-n} < A \zeta_k(e_i), e_j > \zeta_1. \] (1.17)

Using (1.16) and (1.17) we write for \(k=1 \)
\[\sum_{i'j=1}^{n} < \alpha_3(e_i, e_i), \alpha_2(e_j, e_j) > = \sum_{i'j=1}^{n} \sum_{k=1}^{m-n} < A \zeta_k(e_i), e_j > < A \zeta_k(e_i), e_j > \] (1.18)

considering that \(\sum_{i'=1}^{n} A \zeta_k(e_i) = \sum_{i'=1}^{n} a_{ij} e_j \) we get
\[\sum_{i=1}^{n} < A \zeta_k(e_i), e_i > = \sum_{i'=1}^{n} < a_{ij} e_j, e_j > \]
or
\[\sum_{i=1}^{n} < A \zeta_k(e_i), e_i > = \sum_{i=1}^{n} a_{ii}, i-j. \]

Hence we have obtained that
\[
\text{tr } A_{\zeta_k} = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \langle A_{\zeta_k}(e_i), e_i \rangle \quad (1.19)
\]

or

\[
\text{tr } A_{\zeta_k} = \sum_{j=1}^{n} a_{jj} = \sum_{j=1}^{n} \langle A_{\zeta_k}(e_j), e_j \rangle \quad (1.20)
\]

and that

\[
\sum_{k=1}^{m-n} (\text{tr } A_{\zeta_k})^2 = \sum_{i=1}^{n} \sum_{k=1}^{m-n} \langle A_{\zeta_k}(e_i), e_i \rangle \langle A_{\zeta_k}(e_j), e_j \rangle \quad (1.21)
\]

On the other hand we have

\[
\|H\| = \sum_{k=1}^{m-n} (\text{tr } A_{\zeta_k}/n)\zeta_k
\]

and so

\[
n^2 \|H\|^2 = \sum_{k=1}^{m-n} (\text{tr } A_{\zeta_k})^2. \quad (1.22)
\]

Then from (1.18), (1.21) and (1.22) we get

\[
\sum_{i,j=1}^{n} \langle \alpha_2(e_i, e_i), \alpha_2(e_j, e_j) \rangle = n^2 \|H\|^2.
\]

This gives for \(i = j,\)

\[
H = 1/n \sum_{i=1}^{n} \alpha(e_i, e_i).
\]

If \(H = 0\) at each point of \(N\) then \(N\) is minimal and so \(\alpha = 0.\) From (1.9), we write

\[
\alpha_1(e_i, e_i) = \langle L(e_i), e_i \rangle \zeta.
\]

Since the hypersurface \(N\) is totally geodesic, \(L = 0\) and so \(\alpha_1 = 0.\) Then from

\[
\bar{H} = 1/n+1 \sum_{i=1}^{n+1} \alpha_1(e_i, e_i) \text{ we have that } \bar{H} = 0, \text{ that is the submanifold } \bar{N} \text{ is minimal and also from } \alpha_1(\zeta, \zeta) = 0, \text{ we can say that } \zeta \text{ is an asymptotic direction in } \bar{N}. \text{ Therefore we have proved the assertion.}
Application 1.1. Let \overline{N}_1 be an 3-dimensional submanifold in E^m, given by the following parametric form

$$X = \{(a+k/\sqrt{2}) \cos u \cos v, (a+k/\sqrt{2}) \cos u \sin v, (a+k/\sqrt{2}) \sin u, k/\sqrt{2}, 0, \ldots, 0) | x_j = 0, j = 5, 6, \ldots, m, k \in \mathbb{R}\}$$

and let S^2 be a 2-hypersphere in E^m, given by the following parametric form

$$Y = \{(a \cos u \cos v, a \cos u \sin v, a \sin u, 0, \ldots, 0) | y_j = 0, j = 4, 5, \ldots, m, a > 0\}$$. If the scalar curvature of S^2 and \overline{N}_1 are, respectively, r_b and \bar{r}_a in E^m, then

$$r_a - r_b = 9 \|H_a\|^2 - 4 \|H_b\|^2 - \sin u/2(a+k/\sqrt{2})^2 + (H^0)^2.$$

Indeed, we may write

$$y_1 = x_1 = e_1 = (-\sin u \cos v, -\sin u \sin v, \cos u, 0, \ldots, 0)$$

$$y_2 = x_2 = e_2 = (-\sin v, \cos v, 0, \ldots, 0)$$

$$y_3 = y_0 = (1/\sqrt{2} \cos u \cos v, 1/\sqrt{2} \cos u \sin v, 1/\sqrt{2} \sin u, -1/\sqrt{2}, 0, \ldots, 0)$$

then

$$\text{Sp} \left\{ e_1 | p, e_2 | p \right\} = T_{S^2}(p),$$

$$\text{Sp} \left\{ e_3 | p = \xi_0 | p, \partial_{\xi 1} | p, \partial_{\xi 2} | p, \ldots, \partial_{\xi m} | p \right\} = T^1_{S^2}(p)$$

and

$$\text{Sp} \left\{ e_1 | p, e_2 | p, e_3 | p = \xi_0 | p \right\} = T_{\overline{N}_1}(p),$$

$$\text{Sp} \left\{ \xi_1 | p, \partial_{\xi 1} | p, \ldots, \partial_{\xi m} | p \right\} = T^1_{\overline{N}_1}(p).$$

From (1.9) and (1.2) we have

$$\alpha_b(e_1, e_j) = -\langle L(e_1), e_j \rangle = \alpha_a(e_1, e_j),$$

$$\alpha_b(e_1, e_1) = \sum_{i=1}^2 <\alpha_b(e_1, e_1), \alpha_b(e_1, e_1)> + \sum_{i=1}^2 \lambda_i^2$$

(1.24)

and

$$\alpha_a(e_1, e_1) = \sum_{i=1}^2 <\alpha_a(e_1, e_1), \alpha_a(e_1, e_1)> + \sum_{i=1}^2 \lambda_i^2$$

(1.25)

Then, from (1.10), (1.24) and (1.25) we obtain
\[r_a - r_b = 9 \| H_a \|^2 - 4 \| H_b \|^2 - 2 \sum_{i=1}^{2} < \alpha_a(e_i, \zeta_0), \alpha_a(e_i, \zeta_0) > - < \alpha_a(\zeta_0, \zeta_0), \alpha_a(\zeta_0, \zeta_0) > - (H_0)^2. \] (1.26)

If we put the values of \(e_1, e_2 \) and \(\zeta_0 \), given by (1.23), in (1.26) then we obtain

\[r_a - r_b = 9 \| H_a \|^2 - 4 \| H_b \|^2 - \sin u / 2 \left(a + k \right) + (H_0)^2. \]

REFERENCES
