ON THE DEGREE OF APPROXIMATION OF A PERIODIC FUNCTION F BY ALMOST RIESZ - MEANS OF ITS CONJUGATE SERIES

By

NARENDRA KUMAR SHARMA and RAJIV SINHA

Department of Mathematics, S.M. Post Graduate College, Chandausi-202412 (India)

(Received Dec. 28, 1990; Accepted July 9, 1992)

ABSTRACT

The present paper is concerned with the degree of approximation of certain functions belonging to the class Lip (\(\varphi(t)\), p) by almost Riesz means.

1. Let \(f\) be a 2\(\pi\)-periodic function integrable \(L^p\) (\(p > 1\)) and let

\[
f \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)
\]

be its Fourier series.

The conjugate series of the Fourier series (1.1) is given by

\[
\sum_{n=1}^{\infty} (b_n \cos nx - a_n \sin nx)
\]

A function \(f \in \text{Lip} (\varphi(t), p) (p > 1)\) if

\[
\left\{ \int_0^{2\pi} |f(x + t) - f(x)|^p dt \right\}^{1/p} = O (\varphi(t))
\]

when \(\varphi(t)\) is a positive increasing function.

1. Definition (Lorentz [2]). A sequence \(\{S_n\}\) is said to be almost convergent to a limit \(S\),

\[
\text{if } \lim_{n \to \infty} \frac{1}{(n+1)} \sum_{k=p}^{n+p} S_k = S
\]

with respect to \(p\).
An almost convergence is a generalization of ordinary convergence.

2. Definition (Sharma and Qureshi [4]). A series \(\sum_{n=0}^{\infty} U_n \) with the sequence of partial sums \(\{S_n\} \) is said to be almost Riesz summable to \(S \), provided

\[
T_{n,p} = \frac{1}{p_n} \sum_{k=0}^{n} p_k S_{k+p} \rightarrow S \text{ as } n \to \infty
\]

uniformly with respect to \(p \), where

\[
S_{k,p} = \frac{1}{k+1} \sum_{\mu=1}^{k+p} S_{\mu}
\]

and \(\{p_n\} \) be a sequence of non-negative constants, such that \(p_0 > 0 \), \(P_n = p_0 + p_1 + \ldots + p_n \).

The Riesz means is regular if and only if \(P_n \to \infty \) with \(n \).

(see Theorem 1.4.4 of Peterson [3]).

Qureshi [1] proved the following theorem:

Theorem: The degree of approximation of a periodic function \(f(x) \), conjugate to a \(2\pi \)-periodic function \(f(x) \) and belonging to the class \(\text{Lip } \alpha \), by almost Riesz means of its conjugate series, is given by

\[
\max_{0 \leq x \leq 2\pi} |f(x) - T_{n,p}(x)| = \begin{cases}
O \left(\left(\frac{p_n}{P_n} \right)^{\alpha} \right) ; & 0 < \alpha < 1 \\
O \left(\frac{p_n}{P_n} \log \frac{p_n}{P_n} \right) ; & \alpha = 1
\end{cases}
\]

where, \(T_{n,p}(x) \) is the almost Riesz means of series (1.2) and Riesz means are regular such that \(0 < p_n \uparrow \) with \(n \geq n_0 \). The object of this paper is to prove the following theorem.

Theorem: The degree of approximation of a periodic function \(\tilde{f}(x) \), conjugate to a \(2\pi \)-periodic function \(f(x) \) and belonging to the class \(\text{Lip } (\tilde{\varphi}(t), p) \), \((p > 1) \), by almost Riesz means of its conjugate series is given by

\[
\max_{0 \leq x \leq 2\pi} |f(x) - T_{n,p}(x)| = O \left(\tilde{\varphi} \left(\frac{p_n}{P_n} \right) \left(\frac{p_n}{P_n} \right)^{-1/p} \right)
\]
where $\tilde{T}_{n,p}(x)$ is the almost Riesz means of the series (1.2) and Riesz means are regular such that $0 < p_n \uparrow$ with $n > n_0$ where $\rho(t)$ is a positive increasing function and satisfies the following conditions:

\[
(i) \quad \left(\frac{p_n}{P_n} \right) \left(\frac{\rho(t)}{t^{1/p}} \right)^{1/p} dt = O \left(\frac{p_n}{P_n} \right) \\
(ii) \quad \left(\frac{\rho(t)}{t^{1/p+1}} \right)^{1/p} dt = O \left(\frac{p_n}{P_n} \right) \left(\frac{p_n}{P_n} \right)^{-1}
\]

Proof of the Theorem: Let \tilde{S}_k be the k-th partial sum of the conjugate series (1.2). It is easy to show that:

\[
\tilde{S}_k - \tilde{f}(x) = \frac{1}{\pi} \int_0^\pi \frac{\cos \left(k + \frac{1}{2} \right) t}{2 \sin \frac{t}{2}} \psi(t) \, dt
\]

where $\psi(t) = f(x + t) - f(x - t)$

And $\tilde{S}_{k,p}(x) - \tilde{f}(x) = \frac{1}{k+1} \sum_{p=0}^{k+p} \{\tilde{S}_k(x) - \tilde{f}(x)\}$.

\[
= \frac{1}{\pi(k+1)} \int_0^\pi \psi(t) \frac{\sum_{k=0}^n \cos \left(k + \frac{1}{2} \right) t}{2 \sin \frac{t}{2}} dt
\]

\[
= \frac{1}{2\pi(k+1)} \int_0^\pi \psi(t) \frac{(\sin(pt) - \sin(k+p+1)t)}{2 \sin^2 \frac{t}{2}} dt
\]

We have

\[
\tilde{t}_{n,p}(t) - \tilde{f}(t) = \frac{1}{P_n} \sum_{k=0}^n p_k \{\tilde{S}_{k,p} - \tilde{f}(t)\}
\]

\[
= \frac{1}{2\pi P_n} \int_0^\pi \psi(t) \frac{\sum_{k=0}^n p_k [\sin(pt) - \sin(k+p+1)t]}{(k+1)2 \sin^2 \frac{t}{2}} dt
\]

Therefore
\[\left| t_{n+p}(t) - \tilde{f}(t) \right| \leq \frac{1}{2\pi p_n} \int_0^\pi \left| \psi(t) \right| \sum_{k=0}^n \frac{p_k}{k+1} \]

\[\cos(k+2p+1) \frac{t}{2} \sin(k+1) \cdot dt \]

\[\sin^2 \frac{t}{2} \]

\[= \frac{1}{2\pi p_n} \left[\frac{p_n}{p_n} \int_0^\pi \left| \psi(t) \right| \cdot \left| \sum_{k=0}^n \frac{p_k}{k+1} \right| \right] \]

\[\cos(k+2p+1) \frac{t}{2} \sin(k+1) \frac{t}{2} \]

\[\sin^2 \frac{t}{2} \]

Now,

\[I_1 = \frac{1}{2\pi p_n} \int_0^\pi \left| \psi(t) \right| \left| \sum_{k=0}^n \frac{p_k}{k+1} \right| \]

\[\cos(k+2p+1) \frac{t}{2} \sin(k+1) \frac{t}{2} \]

\[\sin^2 \frac{t}{2} \]

\[= 0 \left[\frac{1}{p_n} \int_0^\pi \left| \psi(t) \right| \left| \sum_{k=0}^n \frac{p_k}{k+1} \right| \right] \]

\[\cos(k+2p+1) \frac{t}{2} \sin(k+1) \frac{t}{2} \]

\[\sin^2 \frac{t}{2} \]
ON THE DEGREE OF APPROXIMATION...

\[\begin{align*}
I_1 &= O \left[\frac{1}{P_n} \left\{ \int_0^{p_n} | \psi(t)|^p \ dt \right\}^{1/p} \right] \\
&\quad \times \left\{ \frac{P_n}{P_n} \int_0^{p} \sum_{k=0}^{n} \frac{P_k}{k+1} \left(\cos (k+2p+1) \frac{t}{2} \sin (k+1) \frac{t}{2} \right) \left(\frac{1}{q} \right)^{1/q} \right\} \\
&\quad \times \left\{ \frac{P_n}{P_n} \int_0^{p} \frac{1}{t^{q/2}} \ dt \right\}^{1/q} \\
&\quad \times \left\{ \frac{P_n}{P_n} \int_0^{p} \left(\frac{\varphi(t)}{t^{1/p}} \right)^p \ dt \right\}^{1/p} \\
&\quad \times O \left(\frac{P_n}{P_n} \right)^{-1} + \frac{1}{q} \\
&= O \left(\varphi \left(\frac{p_n}{P_n} \right) \right) \left(\frac{p_n}{P_n} \right)^{-1} + \frac{1}{q} \\
&= O \left(\varphi \left(\frac{P_n}{P_n} \right) \left(\frac{p_n}{P_n} \right)^{-1} \right) \\
&\text{since } \frac{1}{p} + \frac{1}{q} = 1, \text{ such that } 1 \leq q \leq \infty, \\
\text{Similarly,} \\
I_2 &= O \left[\frac{1}{P_n} \int_0^{\pi} | \psi(t)| \left\{ \frac{1}{P_n} \sum_{k=0}^{n} \frac{P_k}{k+1} \right\} \right] \\
\end{align*} \]
\[
\frac{\cos (k+2p+1) }{2} \int \frac{t}{2} \sin (k+1) \frac{t}{2} \sin^2 \frac{t}{2} \, dt
\]

\[
= O \left[\frac{1}{P_n} \left\{ \int \frac{\varphi(t)}{t^{l/p+1}} \, dt \right\}^P \left\{ \int \frac{\varphi(t)}{t^{l/p+1}} \, dt \right\}^P \right] \left\{ \sum_{k=0}^{n} \frac{p_k}{(k+1)} \right\}
\]

\[
\times \frac{\sin \frac{t}{2}}{\sin^2 \frac{t}{2}} \left\{ \int q \, dt \right\}^q
\]

\[
= O \left[\frac{1}{P_n} \left\{ \int \left(\frac{\varphi(t)}{t^{l/p+1}} \right) \, dt \right\}^P \right] \left\{ \sum_{k=0}^{n} \frac{p_k}{(k+2p+1)} \right\} \left\{ \int q \, dt \right\}^q
\]

\[
= O \left[\frac{P_n}{P_n} \times \varphi \left(\frac{p_n}{P_n} \right) \left(\frac{P_n}{P_n} \right)^{-1} \left\{ \int \frac{1}{t^q} \, dt \right\}^q \right]
\]
ON THE DEGREE OF APPROXIMATION...

\[= O \left[\varphi \left(\frac{p_n}{P_n} \right) \left(\frac{p_n}{P_n} \right)^{-1+\frac{1}{q}} \right] \]

\[= O \left[\varphi \left(\frac{p_n}{P_n} \right) \left(\frac{p_n}{P_n} \right)^{-1} \right] \]

Since \{p_n\} is monotonic, increasing, we have

\[\sum_{k=0}^{n} p_k \cos \left(k+2p+1 \right) \frac{t}{2} \leq p_n \sum_{k=0}^{n} \cos \left(k+2p+1 \right) \frac{t}{2} \]

\[= O \left(\frac{p_n}{t} \right) \]

This completes the proof of the theorem.

REFERENCES

