ON THE PARALLEL HYPERSURFACES WITH CONSTANT CURVATURE

M. KEMAL SAĞEL and H.H. HACISALIHOĞLU

Department of Mathematics, Ankara University, Ankara, Turkey.

(Received Sept, 11, 1991; Accepted Dec. 31, 1991)

SUMMARY

Gaussian and mean curvatures, \(K_r \) and \(H_r \), for parallel surfaces in \(E^3 \) are given in [2]. In the present note, by means of higher order Gaussian and mean curvatures, we calculate the generalized the curvatures \(K_r \) and \(H_r \) in \(E^{n+1}, n > 2 \).

I. BASIC CONCEPTS

DEFINITION I.1: Let \(M_1 \) and \(M_2 \) are two hypersurfaces in \(E^{n+1} \), with unit normal vector \(N_1 \) of \(M_1 \),

\[
N_i = \sum_{i=1}^{n+1} a_i \frac{\partial}{\partial x_i},
\]

where each \(a_i \) is a \(C^\infty \) function on \(M_1 \). If there is a function \(f \), from \(M_1 \) to \(M_2 \) such that

\[
f: M_1 \rightarrow M_2
\]

\[
P \rightarrow f(P) = (p_1 + ra_1(P), \ldots, p_{n+1} + ra_{n+1}(P)),
\]

then \(M_2 \) is called a parallel hypersurface of \(M_1 \), where \(r \in \mathbb{R} \) [1].

THEOREM I.1: Let \(M_r \) be a parallel surface of the surface \(M \subset E^3 \). Let the Gaussian curvature and mean curvature of \(M \) be denoted by \(K \) and \(H \) at the point \(P \in M \), respectively, and the Gaussian curvature and mean curvature of \(M_r \) be denoted by \(K_r \) and \(H_r \) at the point \(f(P) \in M_r \), respectively. Then we know[1] that

\[
K_r = \frac{K}{1 + rH + r^2K},
\]

and
\[H_r = \frac{H + 2rK}{1 + rH + r^2K}. \]

THEOREM 1.2: Let \(M \) be a hypersurface of \(E^{n+1} \) and \(K_1, K_2, \ldots, K_n \) are the higher order Gaussian curvatures and \(k_1, k_2, \ldots, k_n \) are the principal curvatures at the point \(P \in M \).

Let define of function
\[\Phi: M \longrightarrow \mathbb{R} \]
\[P \longrightarrow \Phi(P) = \Phi(r, k_1, k_2, \ldots, k_n) = \prod_{i=1}^{n} (1 + rk_i). \]

Then we have that
\[\Phi(r, k_1, k_2, \ldots, k_n) = 1 + r \sum_{i=1}^{n} k_i + r^2 \sum_{i<j}^{n} k_ik_j + \ldots + r^n \prod_{i=1}^{n} k_i \]
or
\[\Phi(r, k_1, k_2, \ldots, k_n) = 1 + rK_1 + r^2K_2 + \ldots + r^n K_n, \]
where \(r \in \mathbb{R} \) is given in definition I.1 [3).

THEOREM 1.3: Let \(M_r \) be a parallel hypersurface of the hypersurface \(M \) in \(E^{n+1} \), \(K_1, K_2, \ldots, K_n \) denote the higher order Gaussian curvatures of \(M \), at the point \(P \in M \). \(K_r \) and \(H_r \) are the generalized Gaussian and mean curvatures of \(M_r \), respectively, at the point \(f(P) \in M_r \).

Suppose the function
\[\Phi: M \longrightarrow \mathbb{R} \]
\[P \longrightarrow \Phi(P) = \Phi(r, k_1, k_2, \ldots, k_n) = \prod_{i=1}^{n} (1 + rk_i). \]

Then we have
\[K_r = \frac{\partial^n \Phi(r, k_1, k_2, \ldots, k_n)}{(\partial r)^n (n!) \Phi(r, k_1, k_2, \ldots, k_n)} \]
and
\[H_r = \frac{\partial \Phi(r, k_1, k_2, \ldots, k_n)}{\partial r \Phi(r, k_1, k_2, \ldots, k_n)} \]
[3].
THEOREM I.4: Let M be a surface of constant positive Gaussian curvature K with no umbilics. Let $r_1 = 1/\sqrt{K}$ and $r_2 = -1/\sqrt{K}$ define parallel sets M_1 and M_2, respectively. Then M_1 and M_2 are immersed surfaces of M which have constant mean curvatures \sqrt{K} and $-\sqrt{K}$, respectively. If M' is a surface with constant mean curvature H (non zero) and non zero Gaussian curvature, let $r = -1/H$ yields a parallel set that is an immersed surface of M' with constant positive Gaussian curvature $H^2[2]$.

II. GENERALIZED THEOREMS

THEOREM II.1: Let M_r be a parallel hypersurface of the hypersurface M in E^{n+1}. Let K_1, K_2, \ldots, K_n denote the higher order Gaussian curvatures of M, at the point $P \in M$ and let

$$\sum_{i=1}^{n-1} r^i K_i = -1$$

then generalized Gaussian curvature of M_r is

$$K_r = \frac{1}{r^n}.$$

PROOF: It follows from Theorem I.3 that the generalized Gaussian curvature of a parallel hypersurface is given by

$$K_r = \frac{\partial^n \Phi (r, k_1, k_2, \ldots, k_n)}{(\partial r)^n}$$

$$= \frac{n \prod_{i=1}^{n} k_i}{\prod_{i=1}^{n} (1 + rk_i)}$$

$$= \frac{n \prod_{i=1}^{n} k_i}{1 + rK_1 + r^2K_2 + \ldots + r^{n-1}K_{n-1} + r^nK_n}$$

since we have,

$$\sum_{i=1}^{n-1} r^i K_i = -1$$

then
\[K_r = \frac{\prod_{i=1}^{n} k_i}{r^n \prod_{i=1}^{n} k_i} \]

or

\[K_r = \frac{1}{r^n} \cdot \]

Note that there exists a sphere in \(\mathbb{E}^3 \) such that \(\sum_{i=1}^{n-1} r^i K_i = -1 \).

THEOREM II.2: Let \(M_r \) be a parallel hypersurface of the hypersurface \(M \) in \(\mathbb{E}^{n+1} \). Let \(K_1, K_2, \ldots, K_n \) denote the higher order Gaussian curvatures of \(M \), at the point \(P \in M \) and let

\[\sum_{i=1}^{n} (i-1) r^i K_i = 1 \]

then the generalized mean curvature of \(M_r \) is

\[H_r = \frac{1}{r} \cdot \]

PROOF: Theorem I.3 gives us that the generalized mean curvature of a parallel hypersurface \(M \), is given by

\[H_r = \frac{\partial \Phi (r, k_1, k_2, \ldots, k_n)}{\partial r} \frac{\Phi (r, k_1, k_2, \ldots, k_n)}{\Phi (r, k_1, k_2, \ldots, k_n)} \]

\[= \frac{K_1 + 2rK_2 + \ldots + nr^{n-1}K_n}{1 + rK_1 + r^2K_2 + \ldots + r^nK_{n-1} + r^nK_n} \]

\[= \frac{1}{r} \left[\frac{rK_1 + 2r^2K_2 + \ldots + nr^nK_n}{1 + rK_1 + r^2K_2 + \ldots + r^{n-1}K_{n-1} + r^nK_n} \right] \]

\[= \frac{1}{r} \left[\frac{\sum_{i=1}^{n} i r^i K_i}{1 + \sum_{i=1}^{n} r^i K_i} \right] \]

\[\frac{1}{r} \left[\frac{1 - \sum_{i=1}^{n} (i-1) r^i K_i}{1 + \sum_{i=1}^{n} r^i K_i} \right] \]

since we have that

\[\sum_{i=1}^{n} (i-1) r^i K_i = 1 \]

then we get that

\[H_r = \frac{1}{r} . \]

COROLLARY: In the case of \(n = 2 \), Theorem II.1 and Theorem II.2 reduce to the results of [2].

ÖZET

SABİT EĞRİLİKLİ PARALEL HİPERÝÜZEYLER ÜZERİNÉ

[2] de verilen \(E^3 \) deki paralel yüzeylerin \(K_r \) ve \(H_r \), Gauss ve ortalama eğrilikleri, bu çalışmada, \(n > 2 \) olmak üzere, \(E^{n+1} \) deki yüksek mertebeden Gauss ve ortalama eğrilikleri yardımcıyla genelleştirilmiş ve hesaplanmıştır.

REFERENCES

