A CONVEXITY STUDY IN SPHERE

M. BELTAGY

Junior College-Madina, P.O. Box 1343 Saudi Arabia

(Received Jan. 5, 1990; Accepted Dec. 31, 1991)

ABSTRACT

Convex subsets, convex bodies and foot points in the unit n-sphere S^n are defined. Some geometric properties of convex bodies and foot points in S^n as a manifold with focal points are derived in comparison with the corresponding properties of convex bodies in both Euclidean space E^n and a Riemannian manifold W without focal points.

1- INTRODUCTION

In [8], P.J. Kelly and M.L. Weiss proved some interesting results when they studied the basic geometric properties of convex bodies in the Euclidean space E^n. Recently, we studied the same properties when the ambient space is a complete simply connected Riemannian manifold W without focal points [3, 4]. It was found in [3, 4] that almost all the results in E^n concerning convexity, foot points and sectional curvatures are still valid in W. As far as we know, properties of convex bodies which have been considered in [3, 4, 8] have not yet been considered for the same sort of bodies in the unit n-sphere S^n. Consequently, this work is mainly devoted to study some geometric properties of convex bodies in sphere. Illustrative examples in E^n and S^n are given as a comparison study to show how results are affected by the existence of conjugate points in the ambient space S^n.

In the following we give some of the results proved in [3, 4, 8]. Proposition (1-1)

Closed geodesic balls in W are convex bodies. Geodesic spheres in W are closed convex hypersurfaces. Horodiscs in W are convex subsets.
Proposition (1-2)

If \(p \) is an interior point in a convex body \(B \subset W \) (or \(E^n \)) with smooth boundary \(\partial B \), then each geodesic ray from \(p \) intersects the hypersurface \(\partial B \) exactly at one point and the intersection is transversal.

Proposition (1-3)

For a convex body \(B \subset W \) (or \(E^n \)) with smooth boundary \(\partial B \)

(i) each tangent geodesic \(\gamma \) to \(\partial B \) has the property \(\gamma \cap \text{Int} (B) = \emptyset \),

(ii) \(B \) lies on one side of the tangent geodesic hypersurface of \(\partial B \) at each point \(p \in \partial B \)

(iii) no two outer geodesic rays perpendicular to \(\partial B \) meet.

Proposition (1-4)

For a compact smooth hypersurface \(M \) in \(W \) there exists a point \(p \in M \) such that the sectional curvature \(K_p(M) \) of \(M \) at \(p \) satisfies \(K_p(M) \geq K_p(W) \).

The remarkable L. Amaral's theorem [1] can be concluded directly and easily from the last proposition (1-4) if we replace \(W \) by the hyperbolic space \(H^n \) (See [3]).

For other interesting results, specially concerning foot points, we refer the reader to [2, 3, 4, 8]. From now on the unit sphere \(S^n \) is always taken as an imbedded hypersurface

\[
S^n = \{ x : x \in E^n, \langle x, x \rangle = 1 \}
\]

in \(E^n \). Geometric properties of \(S^n \) may be found in any text book in differential geometry. All curves are parametrized by arc length. All manifolds are sufficiently smooth for discussions to make sense.

2- Definitions and Background

Let us begin with introducing the convexity concept in a general Riemannian manifold \(M \).

Definition (2-1)

A set \(A \) in \(M \) is called convex if for each pair of points \(p, q \in A \) there is a unique minimal geodesic segment from \(p \) to \(q \) and this segment is in \(A \).

Definition (2-2)

A set \(B \) in \(M \) is a convex body if it is a compact convex subset of \(M \) with a non-empty interior. A strictly convex body is a convex body
B such that the boundary ∂B of B does not contain any geodesic segment of M.

Definition (2-3)

A set B^o is a closed convex (resp. strictly convex) hypersurface of M if it could be made as a boundary of a convex (resp. strictly convex) body B in M, i.e $B^o = \partial B$.

In the light of the above definitions we can easily prove the following remarks.

Remarks

(a) The whole of S^n is not a convex set in contrary to the convexity of E^n (or W).

(b) Any convex body B in S^n is contained in an open hemisphere S_{ψ}^n of S^n with some point $\psi \in S^n$ as its center.

(c) No two points of a convex body $B \subset S^n$ form a conjugate pair. Same thing is valid in a general Riemannian manifold M.

(d) Any convex body $B \subset S^n$ can be mapped geodesically onto a convex body in E^n by using the Beltrami (or central projection) map [2, 6].

(e) Any closed geodesic ball $\overline{B(p, r)}$ centered at an arbitrary point $p \in S^n$ with radius $r < \pi/2$ (small geodesic ball) in S^n is a convex body. This fact is true, in general, for any geodesic ball in either E^n or W.

(f) Any closed geodesic ball of radius $r \geq \pi/2$ is not a convex body in S^n and consequently the closed half-space of S^n is not a convex body in contrary to the same property in either E^n or W [3] (By half-space in W we mean horodiscs). A geodesic ball of radius $r = \pi/2$ will be called great geodesic ball.

(g) Any geodesic sphere $S(p, r)$ of center p and radius $r < \pi/2$ (small geodesic sphere) in S^n is a convex hypersurface.

(h) Totally geodesic hypersurfaces (great spheres) in S^n are non-convex hypersurfaces. Also, geodesics of S^n are non-convex subsets of S^n.

(i) A geodesic sphere $S(p, r)$ of radius r in S^n has constant sectional curvature $K = 1/\sin^2r$ [2]. In this way, a totally geodesic hyper-sphere in S^n has sectional curvature $K = 1$ while small geodesic spheres in S^n are of constant sectional curvatures greater than 1.
(j) The closure of an open convex subset in S^n is not necessarily convex. Open hemispheres in S^n are good examples of this case. In E^n (or W), the closure of any open convex subset is always convex (See [2, 3]). The proof of this fact depends basically on the truncated geodesic cone concept defined below.

(k) Any subset A of S^n with diameter $d(A) \geq \pi$ does not have a convex hull $H(A)$ where $H(A)$ always exists for any subset $A \subset E^n$. If $A \subset S^n$ has $d(A) < \pi$, then $H(A)$ exists. We can show that Beltrami maps from S^n to E^n [2, 6] preserves convex subsets as well as convex hulls.

Definition (2-4)

Let γ be a geodesic ray in S^n from p. A truncated geodesic cone pC_γ in S^n with vertex p and axis γ is the family of all geodesic segments emanating from p with the same initial angle with γ and each segment is of length less than π.

The length π is excluded in the above definition so as to avoid conjugate points of p on the surface of the cone pC_γ.

We can give another definition of the cone pC_γ as follows.

Consider the exponential map $\exp_p : T_pS^n \to S^n$ restricted to a ball $B(0, r) \subset T_pS^n$ of radius $r < \pi$. This map is a diffeomorphism on $B(0, r)$. The cone pC_γ will be taken as the image of a cone oC_L with vertex 0 and axis the straight line segment L in T_pS^n such that $oC_L \subset B(0, r)$.

One of the main results we shall use later on is the following which relates the height function of a submanifold N in a Riemannian manifold M with its second fundamental form [7].

Proposition (2-1)

Let N be an immersed hypersurface of a Riemannian n-manifold M. Let p be a point of N. Then the second fundamental form of N at p is the Hessian of the height function of N with respect to its tangent space T_pN as a hyperplane of T_pM.

3- Main Results on Convexity

Lemma (3-1)

Let B be a convex body in S^n with smooth boundary ∂B. If p is an interior point of B, i.e $p \in \text{Int}(B)$, then each geodesic ray from p intersects of hypersurface ∂B for the first time transversally.
Proof

Let $\gamma: [0, \infty) \to S^n$ be an arbitrary geodesic ray such that $p = \gamma(0)$. This ray γ can not be contained wholly inside B otherwise B will not be contained in an open hemisphere of S^n contradicting remark (b). Assume in contrary to the lemma that γ has a tangential first intersection, say $\gamma(a)$, with ∂B. Clearly, the geodesic segment $\gamma[0, a]$ is free from conjugate points of $\gamma(a)$. Draw a thin geodesic cone $\gamma(a)C_\gamma$ with vertex $\gamma(a)$, axis γ and base D in B (See Fig. (1)). Then there exists a minimal geodesic segment $\overline{\gamma}$ from $\gamma(a)$ to $x \in D$ such that $\overline{\gamma} \not\subset B$ contradicting the convexity of B and the proof is complete.

![Image](image-url)

Fig. (1)

Corollary (3–1)

Let p be an interior point of a convex body $B \subset S^n$ with smooth boundary ∂B. Let $\gamma: [0, 2\pi] \to S^n$ be a closed geodesic through p such that $p = \gamma(0) = \gamma(2\pi)$. Then the first and the last intersections of γ with ∂B are transversal.

Lemma (3–2)

Let p be an interior point of a convex body $B \subset S^n$ and $\gamma: [0, 2\pi] \to S^n$ be a closed geodesic through p such that $p = \gamma(0)$. Let $\gamma(a)$ and $\gamma(b)$, $b > a$, be the first and the last intersections of γ with ∂B. Then $\gamma(a, b) \cap B = \emptyset$.

Proof

Let γ be a closed geodesic through p as given in the lemma. Assume in contrary that $\gamma(a, b) \cap B \neq \emptyset$. Without loss of generality, we consider the case when $\gamma(a, b) \cap B$ is a single point, say $q = \gamma(c)$, for $a < c < b$. (See Fig. (2)).
The geodesic segment $\gamma[a, c]$ should not be minimal otherwise B will be non-convex. Consequently $\gamma[a, c]$ contains a pair (q_1, q_2) of conjugate points. Also, the geodesic segment $\gamma[c, b]$ contains a conjugate pair (s_1, s_2) of points contradicting the geometry of geodesics in S^n. The other possibilities can be discussed similarly.

From the above two lemmas we arrive at the following.

Proposition (3–1)

Any closed geodesic γ through an interior point p of a convex body $B \subset S^n$ with smooth boundary ∂B intersects ∂B exactly twice. The intersections are all transversal.

Corollary (3–2)

The smooth boundary ∂B of a convex body $B \subset S^n$ is diffeomorphic to S^{n-1}.

This corollary can be justified as follows.

Let B be contained in the open hemisphere $S_p^n \subset S^n$ of center p. Draw a small geodesic sphere $S(p, \delta)$ of center $p \in \text{Int}(B)$ and sufficiently small radius δ such that $S(p, \delta) \subset \text{Int}(B)$. By the convexity of B and $B(p, \delta)$, any geodesic ray from p intersects ∂B transversally. In this way, we can build up a central projection diffeomorphism $\beta : \partial B \to S(p, \delta)$. If we compose β with \exp_p^{-1} restricted to S_p^n, we obtain a diffeomorphism $\exp^{-1} \circ \beta : \partial B \to S(0, \delta) \subset T_p S^n \simeq \mathbb{E}^n$.
Proposition (3-2)

Let $B \subset S^n$ be a convex body with smooth boundary ∂B and $p \in \partial B$ an arbitrary point. Then B lies on one side of the great hypersphere tangent to ∂B at p.

Proof

Assume in contrary to the proposition that B does not lie on one side of the great hypersphere tangent to ∂B at p. Consequently, there exists a closed geodesic γ, with orientation indicated in Fig. (3), tangent to ∂B at p which intersects ∂B at least twice, say at q, $r \in \partial B$, transversally (Lemma (3-1)). The geodesic segment γ_{pq} -as it lies outside B- is not minimal and consequently there exists a point $s \in \gamma_{pq}$ which is conjugate to p. The geodesic segment γ_{qp} is not contained in B which contradicts the convexity of B and the proof is complete.

![Fig. (3)](image)

Another proof of the above proposition (2-1) may be given if we notice from Fig. (3) that p has two different conjugate points, the first is on γ_{pq} and the other is on γ_{rp}, contradicting the sphere geometry.

The converse of the above proposition is not generally true as any closed hemisphere S_v^n centered at $v \in S^n$ in S^n lies on one side of each tangent great hypersphere to ∂S_v^n while S_v^n is not a convex body in S^n. Actually, S_v^n has only one tangent great hypersphere to ∂S_v^n which is itself ∂S_v^n. The above proposition (3-2) together with its converse are true in E^n as well as in W [3, 4].

In the light of the above proposition (3-2) and taking into account the property mentioned in proposition (2-1), we have the following consequences.
Corollary (3–3)

For a convex body $B \subset S^n$, each boundary point p is a global minimum point of the height function —with respect to the inner direction and p as a base point— of either B or ∂B.

From this corollary, we can easily show that at each point of ∂B the Hessian of the height function as well as the second fundamental form are definite (or semi-definite) [3] and so we have the following results.

Corollary (3–4)

For a convex body $B \subset S^n$, all the boundary points of B have sectional curvature K satisfying $K \geq 1$.

Corollary (3–5)

For a convex body $B \subset S^n$, there exists at least one point $p \in \partial B$ with sectional curvature K strictly greater than 1.

The reason is that B is contained inside a closed ball $\overline{B}(p, r)$ for some $p \in S^n$ and $r < \pi / 2$ where $\partial B \cap \overline{B}(p, r) \neq \emptyset$. For an arbitrary point $q \in \partial B \cap \overline{B}(p, r)$, we have easily —using remark (i) and the height function concept and its relation with sectional curvature—that K_q of ∂B at q satisfies

$$K_q \geq 1 / \sin^2 r > 1.$$

Corollary (3–5) can be proved for any closed (not necessarily convex) hypersurface M of S^n such that M is contained in an open hemisphere of S^n. In this case, we shall obtain a result similar to that of L. Amaral [1] but in the spherical ambient space.

The following proposition (3–3) gives a necessary and sufficient condition for boundary points of a convex body in S^n to be global maximum points of the height functions.

Proposition (3–3)

For a convex body $B \subset S^n$, each height function on B —with respect to inner direction and boundary base point—has a global maximum point on the boundary ∂B if and only if the diameter $d(B)$ of B satisfies $d(B) \leq \pi / 2$. (The proof is direct)

The following example shows how the condition $d(B) \leq \pi / 2$ is substantial in the above proposition.
Example (3-1)

Let us consider the closed geodesic ball $B(p, r) \subset S^n$ centered at $p \in S^n$ with radius $\pi/4 < r < \pi/2$ as a convex body in S^n. Without loss of generality, let us take $B(p, r)$ to be contained in the upper hemisphere of S^n and let $q \in B(p, r) \cap S(v, \pi/2)$ where v is the north pole of S^n. It is clear that v, which is an interior point of $B(p, r)$ is the global maximum point of the height function based at q (The height of $x \in B$ is $d(x, S(v, \pi/2))$ (See § 4)). Notice that in E^n, global maximum points of each height function are always boundary points (See Fig. 4).

![Diagram](image)

Fig. (4-a) Fig. (4-b)

In Euclidean space E^n, it has been proved that for a convex body $B \subset E^n$ all the points of the segment L joining an arbitrary point $p \in \text{Int}(B)$ and a boundary point $q \in \partial B$ are interior points (except q.) The corresponding result in W is also valid [4] but in S^n -as a manifold with conjugate (or focal) points - we should add a restrictive condition as follows.

Proposition (3-4).

Let B a convex body in S^n, $p \in \text{Int}(B)$ and $q \in \partial B$. Then all the points of the unique minimal geodesic segment γ joining p and q are interior points except q.

The proof can be carried out by using the truncated geodesic cones concept as it has been done in [3, 4].

The converse of the above proposition (3-4) is not generally true. One might consider any closed hemisphere in S^n as an example. The converse is true if we replace S^n by E^n (or W). The reason is that if all
the points of the geodesic segment γ joining $p \in \text{Int}(B)$ and $q \in \partial B$ are interior points (except q), then B will be a starshaped subset of E^n and p will lie in the kernel $(\text{Ker}(B))$ subset of B. In addition, if this is true for all the interior points of B, then $\text{Ker}(B) = B$ and consequently B is convex.

4. Foot Points

The distance $d(p, S)$ from a point p to a non-empty subset S of a Riemannian manifold M is defined as [8].

$$d(p, S) = \text{glb} \{d(p, x) : x \in S\}$$

Definition (4-1)

A point p has a foot q in a subset $S \subset M$ if

(i) $q \in S$,

(ii) $q(p, q) = d(p, S)$

One may understand that the foot point of p in S is the nearest point of S to p. Moreover, if \overline{S} is the closure of S and $p \notin S$, then $d(p, S) = d(p, \partial S)$, i.e the foot point of a point p, in the closure \overline{S} of S, is always a boundary point provided that $p \notin S$. If $p \in S$, then p is the unique foot point of itself. Clearly, the foot point of a point $p \notin S$ in a closed subset S with smooth boundary ∂S is a critical point of the distance function $d_p: \partial S \to \mathbb{R}$ defined as $d_p(x) = d(p, x)$. Also the critical geodesic segment from p to the foot point strikes ∂S orthogonally at the foot point (See [5] p. 216).

Proposition (4-1)

Let B be a convex body in S^n and $p \in S^n$ such that $d(p, B) < \pi / 2$. Then p has a unique foot point in B.

Proof

If $d(p, B) = 0$, then $p \in B$ and p is the unique foot point of itself as indicated above.

If $0 < d(p, B) < \pi / 2$, then $p \in B$. Assume in contrary that p has two different foot points, say q_1 and q_2. Let $d(p, q_1) = d(p, q_2) = \iota$, where $\iota < \pi / 2$. Draw the closed geodesic ball $B(p, \iota)$. We have that $B \cap \overline{B(p, \iota)} = \{q_1, q_2\}$. As $B(p, \iota)$ has diameter less than π, then $\overline{B(p, \iota)}$ is a convex body in S^n. In this way, the unique minimal geodesic
segment γ joining q_1 and q_2 is contained in $\overline{B(p, r)}$. Hence, $\gamma \cap B$ which contradicts the convexity of B. A similar discussion can be carried out if p has more than two foot points.

Remark (4–1)

If $d(p, B) \geq \pi/2$, then the above proposition (4–1) is not necessarily true in the light of the following example.

Example (4–1)

Consider B to be a convex body in S^2 which has a part γ_1 of its smooth boundary $\partial B = \gamma_1 \cup \gamma_2$ as a sufficiently small geodesic segment. The south pole p of S^2 which satisfies $d(p, B) = \pi/2$ has all the points of γ_1 as foot points. (See Fig. (5)).

We can show that the above proposition (4–1) is still true for $d(p, B) \leq \pi/2$ on the condition that B is strictly convex.

The concept of the foot points in subsets as well as convex subsets in sphere (or more generally in a Riemannian manifold) deserves to devote a separate work. We hope to achieve such a study in the near future.

REFERENCES

