THE 3− PLANE AND THE LIGHT CONE

F.M. ELKHOLY and S.M. AL-AREEFI

ABSTRACT

In this paper we show that the 3-plane passing through the origin in a space-time will intersect the light cone in two perpendicular 2-planes.

1− The Principal Planes:

In this section we will give a sketch of how the principal planes can be obtained in order to be able to discuss the way in which a 3− plane intersect the light cone in space time.

A principal plane is a diametral plane which is at right angles to the chords which it bisects. Now if the axes are rectangular, the diametral plane (whose equation is

\[t \frac{\partial F}{\partial x} + m \frac{\partial F}{\partial y} + n \frac{\partial F}{\partial z} = 0, \text{ where} \]

\[F(x,y,z) = ax^2 + by^2 + cz^2 + 2fyz + 2gzx + 2hxy + d = 0 \]

or \(x(a\tau + hm + gn) + y(h\tau + bm + fn) + z(g\tau + fm + cn) = 0 \)

is at right angles to the line \(\frac{x}{t} = \frac{y}{m} = \frac{z}{n} \), if

\[\frac{a\tau + hm + gn}{t} = \frac{h\tau + bm + fn}{m} = \frac{g\tau + fm + cn}{n} \]

If each of these ratios is equal to \(\lambda \), then

\[(a - \lambda)\tau + hm + gn = 0, \]

\[h\tau + (b - \lambda)m + fn = 0, \] \hspace{1cm} (i)

\[g\tau + fm + (c - \lambda)n = 0 \]
Therefore, λ is a root of the equation:

$$\begin{vmatrix}
 a - \lambda & h & g \\
 h & b - \lambda & f \\
 g & f & c - \lambda
 \end{vmatrix} = 0$$

or equivalently,

$$\lambda^3 - \lambda^2 (a+b+c) + \lambda(bc+ca+ab-h^2+g^2+f^2) - D = 0 \quad (\text{ii})$$

where

$$D \equiv \begin{vmatrix}
 a & h & g \\
 h & b & f \\
 g & f & c
 \end{vmatrix}$$

Equation (ii) is called the discriminating cubic. It gives three values of λ, to each of which corresponds a set of values for (t, m, n) and by substituting these sets in the equation $\frac{\partial F}{\partial x} + m \frac{\partial F}{\partial y} + n \frac{\partial F}{\partial z} = 0$, which by means of the relations (i) reduces to $\lambda (tx+my+nz) = 0$, we obtain the equations of three principal planes [1].

2- The Main Result:

A 3-plane in space time has the equation $\Sigma A_r x_r + B = 0$, $r = 1, 2, 3, 4$. This equation will reduce to

$$\Sigma A_r x_r = 0, \ r = 1, 2, 3, 4, \quad (1)$$

if the 3-plane is passing through the origin. In this case it will have a unique orthogonal line through the origin with equations $x_r = A_r u$, where u is a parameter.

Now consider the equation of the light cone:

$$\sum_{i=1}^{3} x_i^2 - x_4^2 = 0 = \langle x, x \rangle = 0 \quad (2)$$

and rewrite equation (1) as follows:

$$\sum_{i=1}^{3} B_i x_i + x_4 = 0, \ B_i = A_i / A_4 \quad (1)'$$

From (1)' and (2) we have

$$\left(\sum_{i=1}^{3} B_i x_i \right)^2 = (-x_4)^2 = x_4^2 - \sum_{i=1}^{3} x_i^2$$
\[\sum_{i=1}^{3} B_i^2 x_i^2 + 2 \sum_{i,j=1 \atop i \neq j}^{3} B_i B_j x_i x_j = \sum_{i=1}^{3} x_i^2 \]

or

\[\sum_{i=1}^{3} C_i^2 x_i^2 + 2 \sum_{i,j=1 \atop i \neq j}^{3} B_i B_j x_i x_j = 0, \quad C_1 = B_1^2 - 1 \quad (3) \]

The discriminating cubic for equation (3) is:

\[
\lambda^3 - \lambda^2 (C_1 + C_2 + C_3) + \lambda (C_2 C_3 + C_3 C_1 + C_1 C_2 - B_2^2 B_3^2 - B_1^2 B_3^2 - B_1^2 B_2^2) - D = 0,
\]

where

\[
D = \begin{vmatrix}
C_1 & B_1 B_2 & B_1 B_3 \\
B_2 B_1 & C_2 & B_2 B_3 \\
B_1 B_3 & B_2 B_3 & C_3 \\
\end{vmatrix} = C_1 + C_2^2 + C_3 + 2 \neq 0
\]

Thus: \(\lambda^3 - A \lambda^2 - (2A + 3) \lambda - (A + 2) = 0, \) \(A \equiv C_1 + C_2^2 + C_3, \) and so, \((\lambda + 1)^2 [\lambda - (A + 2)] = 0. \) It follows that \(\lambda = -1, -1, A+2. \)

Consider first \(\lambda = -1. \) In this case the set of equations (i) may reduce to the single equation:

\[B_1 t_1 + B_2 m_1 + B_3 n_1 = 0, \quad i = 1, 2, 3, \quad (4) \]

If we consider \(\lambda = A + 2, \) the set of equations (i) may take the from:

\[
(B_2^2 + B_3^2) t_3 + B_1 B_2 m_3 + B_1 B_3 n_3 = 0, \\
B_1 B_2 t_3 - (B_1^2 + B_2^2) m_3 + B_2 B_3 n_3 = 0, \\
B_1 B_3 t_3 + B_2 B_3 m_3 - (B_1^2 + B_2^2) n_3 = 0
\]

(5)

Dividing the first equation of (5) by \(B_1 \) and the second by \(B_2 \) then subtracting, we have:

\[
\frac{t_3}{B_1} = \frac{m_3}{B_2}
\]

Again from the second and third equations of (5), we get

\[
\frac{m_3}{B_2} = \frac{n_3}{B_3}
\]

Thus,
\[
\frac{\nu_3}{B_1} = \frac{m_3}{B_2} + \frac{n_3}{B_3}
\]

(6)

From the above results we find that the single equation (4) corresponding to \(\lambda_1 = \lambda_2 = -1\), is the condition that the directions given by \((\nu_1, m_1, n_1)\) and \((\nu_3, m_3, n_3)\) should be at right angles. The principal planes corresponding to the directions \((\nu_1, m_1, n_1)\) and \((\nu_3, m_3, n_3)\) are respectively: \(\nu_1 x_1 + m_1 x_2 + n_1 x_3 = 0\) and \(\nu_3 x_1 + m_3 x_2 + n_3 x_3 = 0\), or equivalently: \(\nu_1 x_1 + m_1 x_2 + n_1 x_3 = 0\) and \(B_1 x_1 + B_2 x_2 + B_3 x_3 = 0\), where \(B_1 \nu_1 + B_2 m_1 + B_3 n_1 = 0\). It follows that the 3-plane which pass through the origin will intersect the light cone in two perpendicular planes.

REFERENCE

Dept. of Mathematics,
Faculty of Science,
Tanta University,
Tanta, Egypt.

Department of Mathematics,
College of Science for Girls,
Dammam, Saudi Arabia.