A Criterion For Restricted Ideal Sheaves and on Regular Covering Spaces

by

Cengiz ULUÇAY

3

Faculté des Sciences de l'Université d'Ankara
Ankara, Turquie
La Revue "Communications de la Faculté des Sciences de l'Université d'Ankara" est un organe de publication englobant toutes les disciplines scientifiques représentées à la Faculté des Sciences de l'Université d'Ankara.

La Revue, jusqu'à 1975 à l'exception des tomes I, II, III était composé de trois séries

Série A: Mathématiques, Physique et Astronomie,
Série B: Chimie,
Série C: Sciences Naturelles.

A partir de 1975 la Revue comprend sept séries:

Série A₁: Mathématiques,
Série A₂: Physique,
Série A₃: Astronomie,
Série B: Chimie,
Série C₁: Géologie,
Série C₂: Botanique,
Série C₃: Zoologie.

A partir de 1983 les séries de C₂ Botanique et C₃ Zoologie ont été réunies sous la seule série Biologie C et les numéros de Tome commenceront par le numéro 1.

En principe, la Revue est réservée aux mémoires originaux des membres de la Faculté des Sciences de l'Université d'Ankara. Elle accepte cependant, dans la mesure de la place disponible, les communications des auteurs étrangers. Les langues Allemande, Anglaise et Française seront acceptées indifféremment. Tout article doit être accompagné d'un résumé.

Les articles soumis pour publications doivent être remis en trois exemplaires dactylographiés et ne pas dépasser 25 pages des Communications, les dessins et figures portes sur les feuilles séparées devant pouvoir être reproduits sans modifications.

Les auteurs reçoivent 25 extraits sans couverture.

l'Adresse : Dergi Yayın Sekreteri,
Ankara Üniversitesi,
Fen Fakültesi,
Beşevler-Ankara
TURQUIE
A Criterion For Restricted Ideal Sheaves and on Regular Covering Spaces

Cengiz ULUÇAY

Dept. of Mathematics, Faculty of Science, Institute of Science, Ankara University, Ankara
(Received November 23, 1983, accepted January 30, 1984)

SUMMARY

In this paper a Criterion for restricted ideal sheaves and a necessary and sufficient condition for regular subcovering spaces are given.

1. A Criterion

In a recent paper [4] we have studied the algebraic structure of restricted analytic sheaves and subsheaves.

Accordingly, the results of the papers [1, 2, 3] may be collected in the following

Theorem 1.1. Let X be a connected complex analytic manifold with fundamental group $F \neq 1$. Let D denote any normal subgroup of F such that F / D is commutative. Then $[F,F]$ is the smallest normal subgroup of the type. Each D determines a regular covering space of X with fundamental group D and which is a restricted ideal subsheaf of the restricted analytic sheaf A of germs of the totality A (X) of holomorphic functions on X. In particular, $[F,F]$ determines A which is maximal.

The proof of this theorem is substantially contained in the quoted papers and especially in the fundamental theorem [3].

On the other hand $[F, F] \subset D$ is clear. For otherwise there is $[a, b] \notin D$, $a, b \in F$. The elements of F / D being the cosets of D, let A, B, A^{-1}, B^{-1} be those containing a, b, a^{-1}, b^{-1} respectively. But then $[A, B]$ is a coset containing $[a, b]$ and is different from D, and so A, B
do not commute, contrary to the hypothesis. Finally, $F / [F, F]$ is commutative. For, if A, B are any two cosets of $[F, F]$ then $[A, B]$ is a coset containing a commutator $[a, b], a \in A, b \in B$ and so $[A, B] = [F, F]$. Hence A, B commute.

Summarizing, we obtain the following

Criterion. F / D is commutative (or a regular covering space of X determined by D is r-ideal subsheaf of A) if and only if D contains $[F, F]$.

We now give examples of normal subgroups of F that do not contain $[F, F]$. Indeed, if N is any normal subgroup of F, so is $[N, N]$. In fact, if $n = [a, b] \in [N, N]$, then for every $g \in F$,

$$g^{-1}ng = (g^{-1}ag)(g^{-1}bg)(g^{-1}ag)^{-1}(g^{-1}bg)^{-1} \in [N, N].$$

But clearly, $[N, N]$ does not contain $[F, F]$. Hence not every regular covering space of X is a r-ideal subsheaf. Note also that $[N, N]$ is smaller than $[F, F]$ but $F / [N, N]$ is not commutative.

2. Regular Covering Spaces. For our purpose we may adopt the following [5]. The criterion is self satisfied as soon as F is a Abelian. For then every subgroup D is normal, F/D Abelian, $[F, F] = 1$.

Definition 2.1. Let Y, X be two connected Hausdorff spaces, $\pi: Y \to X$ is a covering space of X if every $x \in X$ has an open neighborhood such that $\pi^{-1}(U)$ is a disjoint union of open sets s_i in Y, each of which is mapped homeomorphically onto U by π. Such U are said to be evenly covered, and the s_i are called sheets over U.

As immediate consequences:

1. The fibre $\pi^{-1}(x)$ over any point $x \in X$ is discrete.
2. π is local homeomorphic.
3. π is continuous.

π is called a projection. The covering space is usually denoted by (Y, π) or simply by Y if no confusion arises.

An important property is that open sets are mapped on open sets. In particular, $\pi(Y)$ is a region (connected open set) on X and (Y, π) is a covering space of $\pi(Y)$.
Definition 2.2. Let (Y, π) be a covering space of X, $Y^* \subseteq Y$ open and $\pi^* = \pi\mid Y^* : Y^* \to X$ with $\pi^{-1}(x) \subseteq \pi^{-1}(x)$ over any point $x \in X$. Then (Y^*, π^*) is called a subcovering space of Y.

We say that (Y, π) is a stronger covering than (Y^*, π^*) or (Y^*, π^*) is a weaker covering than (Y, π).

Theorem 2.1. Each subcovering of a covering (Y, π) is a covering space of X.

Proof. We need only to show that $\pi^* : Y^* \to X$ is locally topological. Indeed, for every element $\sigma \in Y^*$ there are open neighborhoods $V(\sigma) \subseteq Y$ and $U(\pi(\sigma)) \subseteq X$ such that $\pi\mid V : V \to U$ is topological. But then $V^* = V \cap Y^*$ is an open neighborhood of σ in Y^*, $U^* = \pi(V^*)$ is an open neighborhood of $\pi(\sigma)$ in X and $\pi^*\mid V^* = \pi\mid V^* : V^* \to U^*$ is a topological mapping.

Remark. In view of condition 2. Y inherits all the local properties of X. Consequently, although a coverin space of an arbitrary topological space may seem to be complicated, it will not be however very difficult to deal with some type of regular covering spaces over a complex analytic manifold X. X, just because of this inheritance (see theorem 2.5).

Definition 2.3. A covering space is said to be regular [6] if there exists a continuation along any arc γ of X and from any point over the initial point of γ.

Definition 2.4. A cover transformation of a covering space. (Y, π) is a fiber preserving topological mapping of Y onto itself.

It is clear that the cover transformations form a group T.

As a consequence, a regular covering space of X can also be characterized by the property:

If σ_1, σ_2 are any two points on $\pi^{-1}(x)$ then there is an element $t \in T$ such that $t(\sigma_1) = \sigma_2$. [7].

Now, let F be the fundamental group of X. Let N^*, N be two normal subgroups of F defining the regular covering spaces Y^*, Y respectively. Then

Theorem 2.3. (Y^*, π^*) is a subcovering of (Y, π) if and only if $N \subseteq N^*$.
Proof. We follow the idea in [6]. Suppose that \((Y^*, \pi^*)\) is a subcovering of \((Y, \pi)\). To \(\gamma \in N\) there corresponds a closed curve \(\tilde{\gamma}\) on \(Y\), say from \(0 \in Y, 0 \in \pi^{-1}(0), 0 \in X\). There is a \(t\) which transforms \(\tilde{\gamma}\) into a closed curve from \(0^* \in Y^*, 0^* \in \pi^{-1}(0), 0^* = t(0)\). Since by hypothesis \(\pi^*^{-1}(x) \subset \pi^{-1}(x)\) over any point \(x \in X\), this closed curve coincides with a closed curve \(\tilde{\gamma}^*\) on \(Y^*\) from \(0^*\) and whose projection by \(\pi^*\) is of course identical with \(\gamma\). I.e., \(\frac{M}{\pi} = \frac{M^*}{\pi^*}\) ot. Hence \(\gamma \in N^*\) and so \(N \subset N^*\).

Suppose now \(N \subset N^*\). Let \(\sigma \in Y, \sigma \in \pi^{-1}(x)\). Join \(0\) to \(\sigma\) by \(\tilde{\gamma}\), determine the projection \(\gamma = \pi(\tilde{\gamma}) \subset N\) and construct the continuation \(\tilde{\gamma}^*\) on \(Y^*\) along \(\gamma \subset N^*\) from \(0^* \in \pi^{*^{-1}}(0) = \pi^{-1}(0)\). It follows that the terminal point \(\sigma^*\) of \(\tilde{\gamma}^*\) is on \(\pi^{-1}(x)\) whose projection by \(\pi^* = \pi|Y^*\) is \(x\). Hence \((Y^*, \pi^*)\) is a subcovering of \((Y, \pi)\).

From there on we shall use the notation \(D\) for a normal subgroup of \(F\) such that \(F / D\) is commutative. By the Criterion every \(D\) contains the commutator subgroup \([F, F]\) of \(F\). With respect to these \(D\)'s we have

Theorem 2.4. Let \(X\) be a Hausdorff space with fundamental group \(F \neq 1\). Then the regular covering space defined by \([F, F]\) is maximal, i.e., is the strongest.

Proof. Theorem 2.3 shows that the ordering of regular covering spaces by inclusion is isomorphic with the ordering of the corresponding normal subgroups by inclusion. Moreover, each chain of regular covering spaces has an upper bound. By Zorn's lemma there is a maximal regular covering space of \(X\) that corresponds to \([F, F]\).

Furthermore, theorem 1.1 or the fundamental theorem [3] asserts that

Theorem 2.5. If \(X\) is a connected complex analytic manifold with fundamental group \(F \neq 1\), then the maximal regular covering space of \(X\) defined by \([F, F]\) is just the restricted analytic sheaf \(A\), i.e., the sheaf of germs of the totality of holomorphic functions \(A(X)\) on \(X\).

Proof. Since the details of the proof may be found in [3] we shall not repeat the proof here but only recall the basic idea. Let \(\{U_\alpha, z_\alpha\}, \alpha \in I,\) be an atlas of \(X\). Then each point \(\sigma\) of the regular covering space defined by \([F, F]\) inherits the local property of \(U_\alpha\), i.e., to \(\sigma\) is associated a corresponding local parameter \(z_\alpha\). If follows that each \(\sigma\) may be repre-
sented by a convergent power series $e = e_{x} \in z_{x}$ in z_{x}, say in U_{x} about $\pi(\sigma) = x \in U_{x}$, and conversely. The representation $\varphi(\sigma) = e$ is of course an isomorphism. For, it is one to one and on each fibre $\varphi(\sigma_{1} + \sigma_{2}) = e_{1} + e_{2} = \varphi(\sigma_{1}) + \varphi(\sigma_{2})$. The totality of these convergent power series defines the totality $\mathcal{A}(X)$ of holomorphic functions on X which in turn defines the restricted analytic sheaf \mathcal{A} [1]. Namely \mathcal{A} is the disjoint union of the stalks (fibres) $\pi^{-1}(x)$ with $\pi^{-1}(x) \cong F / \langle F, F \rangle$ for each x.

In short, the regular covering space $\tilde{\mathcal{A}}$ defined by $[F, F]$ and represented by φ is homeomorphically isomorphic, hence identical, to \mathcal{A} and is itself analytic complex manifold of dimension n with the projection map $\pi: \tilde{\mathcal{A}} \to X$ holomorphic. In general F is not Abelian. Else \mathcal{A} is the universal covering space of X.

Important Remark. The proof of the fundamental theorem is evident. Indeed, by hypothesis $\tilde{\mathcal{A}}$ and \mathcal{A} having the same fundamental group $[F, F]$ are isomorphically equivalent, i.e., there is a topological fibre (stalk) preserving mapping between them (see [1], p. 44, corollary). Actually, by construction, $\tilde{\mathcal{A}}$ is a complex analytic manifold, and the isomorphism between the fibre $\pi^{-1}(x)$ and the stalk $\pi^{-1}(x)$ issuing from an arbitrary point $x \in X$ makes the representation of $\sigma \in \pi^{-1}(x)$ by the corresponding convergent power series $e \in \pi^{-1}(x)$ evident.

Moreover, if $U = U(x) \subset U_{x}$ is an open neighborhood, then the diagram defined by $e = \varphi(\sigma)$ and $e = \pi_{A}^{-1} \sigma(\pi)$ is commutative and topological on U. It follows immediately that φ defines a one to one mapping between $\tilde{\mathcal{A}}$ and \mathcal{A} which in view of the diagram is easily seen to be an open mapping and therefore topological.

In fact, the corollary holds for the general case in which X is a connected locally arcwise connected Hausdorff space and the regular covering spaces have the same fundamental group. For, then the groups of covering transformations are isomorphic. In particular, the fibres issuing from each point are isomorphic. This yields a one to one correspondence between the points of the covering spaces. As before, this mapping is easily seen to be an open mapping. Hence it is topological. As a conclusion two regular covering spaces with the same fundamental group can always be identified. Otherwise stated,

Uniqueness Theorem. A regular covering space is uniquely determined up to an isomorphism.
Proof. Let \((Y, \pi), (Y', \pi')\) two regular covering spaces corresponding to a normal subgroup \(N \subseteq F\). The one to one correspondence between the points \(y \in Y, y' \in Y'\) follows directly from the decomposition of \(F\) into the cosets \(N\{a_i\}\) where \(a_i\) is a closed arc at \(x\) in \(X\). Over \(ai\) lie the arcs joining \(x\) to \(\sigma \in \pi^{-1}(x)\) and \(x\) to \(\sigma' \in \pi'^{-1}(x)\) in \(Y, Y'\) respectively. Both arcs correspond to the element of the group \(F/N\) determined by \(a_i\) [1]. \(F/N\) is isomorphic to the groups of cover transformations of \(Y, Y'\) respectively. As to the homeomorphism between \(Y, Y'\) it follows from the topological commutative diagrams.

REFERENCES

ÖZET

Bu makalede, tahditli demetler için bir kriter ile regular alt örtü uzaylar için bir gerek ve yeter şart verilmiştir.