On The Motion of The Frenet Trihedron of a Space Curve

by

H. H. HACISALİHOĞLU
La Revue "Communications de la Faculté des Sciences de l'Université d'Ankara" est un organe de publication englobant toutes les disciplines scientifiques représentées à la Faculté: Mathématiques pures et appliquées, Astronomie, Physique et Chimie théoriques, expérimentales et techniques, Géologie, Botanique et Zoologie.

La Revue, à l'exception des tomes I, II, III, comprend trois séries

Série A: Mathématiques, Physique et Astronomie.
Série B: Chimie.
Série C: Sciences naturelles.

En principe, la Revue est réservée aux mémoires originaux des membres de la Faculté. Elle accepte cependant, dans la mesure de la place disponible, les communications des auteurs étrangers. Les langues allemande, anglaise et française sont admises indifféremment. Les articles devront être accompagnés d'un bref sommaire en langue turque.
On The Motion of The Frenet Trihedron of a Space Curve

H. H. HACISALİHOĞLU

Department of Mathematics, University of Ankara, Turkey*
(Received 3 April 1968)

In 1963 Hans Vogler in his paper called "Dje auf einer Torse verlaufenden Linien konstanten Gratabstandes als duale Seitenstücke zu den pseudorektifizieren den Torsen einer Raumkurve" has studied the geometrical varieties formed by the elements of the moving FRENET trihedron along the curve traced on a developable at a constant distance from its edge of regression. The developable itself is the dual corresponding of the pseudo-rectifying developable of a space curve.

In this paper we have studied the geometrical varieties of the elements of the moving Frenet trihedron along the parametric curves of the skew surface generated by a straight line fastened in the rectifying plane, to the moving Frenet trihedron of a space curve.

The parametric curves which are taken into consideration have given more general results than the curves at a constant distance from the edge of regression. Thus we were able to deduce the same results of Hans Vogler as special cases of the problem.

I. INTRODUCTION

Let \(k \) be any twisted curve, we denote by \(D \) the Frenet trihedron at a point \(X \) of the curve, and its motion along the curve by \(T \). And let \(S \) denote the instant helicoidal motion which represent \(T \) at the time \(t \). Let a straight line tightly fastened to \(D \) at the origin be \(d \), and the ruled surface generated by this straight line during the motion \(T \) be \((d) \). We denote by \(P_\nu \) a point on \(d \) at a distance \(\nu \) from the point \(X \). The loci of the points \(P_\nu \) during the motion \(T \) are the parametric curves \(C_\nu \) of the surface \((d) \).

The unit vector \(\vec{d} \) on \(d \) referred to the Frenet trihedron is:

\[
\vec{d} = d_1 \vec{t} + d_2 \vec{n} + d_3 \vec{b}
\]

* Mailing adress: A. Ü. Fen Fakültesi, Cebir-Geometai Kürsüsü, Ankara, Turkey
If \(\vec{X} \) is the position vector of the point \(X \) and \(s \) is the arc length of \(k \), then the ruled surface \((d) \) can be given as:

\[
(2) \quad \vec{X}(s,v) = \vec{x}(s) + v \vec{d}(s)
\]

The parameter of distribution of \((d) \) will be:

\[
(3) \quad \lambda_d = \frac{(d_2^2 + d_3^2) \tau - d_1 d_3 \kappa}{d_3^2 (\kappa^2 + \tau^2) + (d_1 \kappa - d_3 \tau)^2}
\]

A necessary and sufficient condition for \((d) \) to be developable is that:

\[
(d_2^2 + d_3^2) \tau - d_1 d_3 \kappa = 0
\]

or

\[
(4) \quad \frac{\kappa}{\tau} = \frac{d_2^2 + d_3^2}{d_1 d_3} = \tan \theta \quad \text{(where } \theta = \text{cte)}
\]

As an immediate result of this we have:

Theorem Ia: The ruled surface \((d) \) generated by the straight line \(d \) fastened at the origin to the Frenet trihedron \(D \) of a twisted curve \(k \), during its motion \(T \), is a developable if and only if \(k \) is a general helix satisfying the relation:

\[
\frac{\kappa}{\tau} = \frac{d_2^2 + d_3^2}{d_1 d_3} = \tan \theta \quad \text{(where } \theta = \text{cte.)}
\]

The curve traced by \(P_v \) of the line \(d \) during the motion \(T \) on the ruled surface \((d) \) for \(v = \text{cte} \) will be the parametric curve \(C_v \) with the equation:

\[
(5) \quad \vec{X}(s) = \vec{x}(s) + v \vec{d}(s) \quad \text{(v = cte)}
\]

The tangent \(\vec{t}_v \) of the curve \(C_v \) at the point \(P_v \) is:

\[
(6) \quad \vec{X} = \vec{t}_v = (1 - vd_2 \kappa) \vec{t} + v (d_1 \kappa - d_3 \tau) \vec{n} + vd_2 \tau \vec{b}
\]
It can immediately be seen from (6) that the tangent \mathbf{t}_v has
components on the three axes of D. Without imposing any restric-
tion on the twisted curve k, only the third component of
\mathbf{t}_v can be zero. Which implies:

\begin{equation}
 d_2 = 0
\end{equation}

meaning that the straight line d lie in the rectifying plane Thus
during the motion T the tangents \mathbf{t}_v of the orbits of the points
which are in the rectifying plane are parallel to the osculating
plane of k at that instant. By substitution:

\begin{equation}
 \begin{cases}
 \mathbf{d} \cdot \mathbf{t} = \cos \alpha = d_4 \\
 \mathbf{d} \cdot \mathbf{b} = \sin \alpha = d_3
 \end{cases}
\end{equation}

from (4) we have:

\begin{equation}
 (8') \quad \frac{\kappa}{\tau} = \tan \theta = \frac{d_3}{d_4} = \tan \alpha
\end{equation}

which gives $\theta = \alpha$. For this special case theorem Ia becomes:

Theorem Ib: The ruled surface (d), generated by a straight
line d fastened to the rectifying plane of a
twisted curve k satisfying the relation $\tan \alpha$

\begin{equation}
 \frac{d_3}{d_4},
\end{equation}

during the motion T of its Frenet

trihedron D is a developable if and only if
k is a general helix with an angle of inclination
equal to α.

We denote by $(d)_0$ the skew surface generated by the straight
line d which is fastened to D at the origin and which lies in the
rectifying plane of the twisted curve k during the motion T and
the parametric curve $v = cte$ of $(d)_0$ by C_v. The skew surface
(d)_0 and its parametric curves will be the main topic of our investigations.

If we include the condition d_3 = 0 to (8) then the straight line d will coincide with the tangent \(\vec{t} \) of D and \((d)_0 \) becomes the torse generated by the tangents of the twisted curve k. For this special case the parametric curves \(C_v \) are the curves at a constant distance from the edge of regression of the surface generated by the tangents. Hans Vogler in his paper [1] has studied the curves traced on a torse at a constant distance from its edge of regression, the torse being the dual of the pseudo-rectifying torse of a space curve [3].

In this paper by investigating the parametric curves \(C_v \) of the skew surface \((d)_0 \) we will see that the results Hans Vogler obtained will also apply to the parametric curves.

II. The Tangents \(\vec{t}_v \) of the Curves \(C_v \).

The straight line d satisfying the condition (7), during the motion T generates the skew surface \((d)_0 \) and a point \(P_v \) on d traces a parametric curve \(C_v \) on \((d)_0 \). The tangent \(\vec{t}_v \) of \(C_v \) at the point \(P_v \) by (6) and (7) is:

\[
(6') \quad \vec{t}_v = \vec{t} + v (d_1 \nu - d_3 \tau) \vec{n}.
\]

The angle \(\beta \) between \(\vec{t}_v \) and \(\vec{d} \) will be:

\[
(9) \quad \tan \beta = \frac{\sqrt{1 + v^2 (d_1 \nu - d_3 \tau)^2 - d_1^2}}{d_3}
\]

The curves \(C_v \) being the loci of the fixed points of D during the motion T, the tangents of these curves at the time t will belong to the quadratic ray complex \(Q_0 \) of the tangents of the orbits during the motion T [2]. Thus:

Theorem II. At an instant t the tangents of the parametric curves of the ruled surface \((d)_0 \) are fastened to
D and belong to the quadratic ray complex formed by the torsal lines of the ruled surfaces generated by the tangents during the motion T.

Let $B = d_1 x - d_3 r$, as a special case if k is a Bertrand curve which means $B = cte$, by (6') two following theorems can be given

Theorem III. If k is a Bertrand curve then the tangents \mathbf{t}_v of the parametric curves C_v of the skew surface $(d)_0$ are fastened to D.

Theorem IV. If the tangents \mathbf{t}_v of the parametric curves C_v of the skew surface $(d)_0$ are fastened to D then the space curve k is a Bertrand curve.

As an immediate result of (3) and (7) we have:

Theorem V. If k is a Bertrand curve then the parameter of distribution of the skew surface $(d)_0$ is constant and has the value

$$\lambda_d = - \frac{d_3}{B}$$

(9') for every generator d.

To find the envelope of the projections of the tangents \mathbf{t}_v on the osculating plane, at an instant t:

Let (x, y, z) be any point on the line directed by \mathbf{t}_v passing through the point $P_v (vd_1, O, vd_3)$ then its equation becomes:

$$\left\{ \begin{array}{l}
z - vd_3 = 0 \\
y = vB (x - vd_1) \end{array} \right.$$

(10)

The envelope of their projection on the osculating plane as v varies will be the parabola

$$x^2 = \frac{4d_1}{B} y$$

(11)
On the basis of this result we can formulate the following theorems:

Theorem VI. The envelope of the tangents \textbf{t}_v of the parametric curves C_v of the rulate surface $(d)_0$ on the osculating plane at an instant t is the parabola

$$x^2 = \frac{4d_1}{B} v$$

referred to the system D. This parabola is tangent to the curve k and its focal distance is

$$\frac{1}{B}.$$

Theorem VII. As a particular case, if the curve k is a Bertrand curve then the parabola is fastened to D.

The element of arc ds_v of the curves C_v from (6) is:

\begin{equation}
(12) \quad ds_v = \sqrt{1 + v^2 B^2} \, ds
\end{equation}

If k is a Bertrand curve then from (12)

\begin{equation}
(12') \quad S_v = \sqrt{1 + v^2 B^2} \, s
\end{equation}

is deduced. This property can be given by:

\begin{center}
\includegraphics[width=0.5\textwidth]{fig1.png}
\end{center}

Fig. 1

Theorem VIII. If the curve k is a Bertrand curve then the corresponding arc lengths $P_1 P_2$ of k
and Q_1, Q_2 of C_v are proportional. Their ratio is:

$$\gamma_v = \sqrt{1 + v^2 B^2}$$

III. The normal planes and the polar axes of the curves C_v.

The equation of the normal plane of a curve C_v referred to D is:

$$(\vec{X} - \vec{x} - vd). \vec{t}_v = O$$

Where \vec{X} is any point on the normal plane. In virtue of (7) and (6') the equation above can be written as:

$$(14') \quad X + vBy = vd_1$$

It follows from (14') that for every value of v there corresponds a normal plane parallel to the Z axis and all these planes pass through the intersection line m of the planes,

$$\begin{align*}
X &= 0 \\
y &= \frac{d_1}{B}
\end{align*}$$

This line m passes through the focus of the parabola (11) and is perpendicular to the osculating plane. Thus we can give the theorems:

Theorem IX. The normal planes of the parametric curves C_v from a pencil, its axis is the straight
line m which passes through the focus of the parabola \(x^2 = \frac{4d_1}{B} y \) and is parallel to the polar axis of the curve k.

Theorem X. If k is a Bertrand curve then the normal planes \(v \) of the curves \(C_v \) from a pencil of planes fastened to D. The axis which is fastened to D passes through the focus of the parabola, \(x^2 = \frac{4d_1}{B} y \), and is parallel to the polar axis of the curve k.

Let us investigate the polar axis of the curves \(C_v \):

By differentiating the equation (14) of the normal planes with respect to the arc length s of k and from (6') we have:

\[
-\nu s Bx + (\nu + vB') y + \nu \tau Bz = 1
\]

The polar axis of \(C_v \) has to satisfy both the equations (14) and (16), therefore it has the direction of

\[
\vec{b}_v = \frac{v^2 \tau}{B^2} \vec{t} - \nu \tau B \vec{n} + (\nu + vB' + v^2 \nu B^2) \vec{b}
\]

Here \(\vec{b}_v \) is the binormal of the curve \(C_v \). The intersection point of the line m and the consecutive normal plane (16) is a point on \(m_v \). The coordinates of this point from (15) and (16) is:

\[
\begin{align*}
x &= 0 \\
y &= \frac{d_1}{B} \\
z &= \frac{d_3 \tau + d_1 vB'}{\nu \tau B^2}
\end{align*}
\]

\(E \) being a point on the ruled surface \(\Psi_{m_v} \) generated by the polar axis \(m_v \) (fig. 3) we have:

\[
\vec{E} = \vec{E} (u,v) = \frac{d_1}{B} \vec{n} + p \vec{b} + u \vec{b}_v
\]

or by replacing
\[C = \kappa + vB' + v^2 \kappa B^2 \]

\[\vec{E} = uv^2 \tau B \vec{z} + \left(\frac{d_1}{B} - uv\tau B \right) \vec{n} + \left(\frac{d_3 \tau + d_1 v B'}{v\tau B^2} \right) u \vec{C} \vec{b} \]

is deduced, the equation \(19\)

referred to the system D has the parametric form:

\[
\begin{align*}
 x &= uv^2 \tau B^2 \\
 y &= \frac{d_1}{B} - uv\tau B \\
 z &= -\frac{d_3 \tau + d_1 v B'}{v\tau B^2} + u \vec{C}
\end{align*}
\]

By eliminating \(u\) and \(v\) from \(19'\) we have as the equation of the surface \(\mathcal{W}_{m_v}\):

\[(y - \frac{d_1}{B})^2 + x^2 = \frac{\tau}{\kappa} \left[z - \frac{d_1}{B} \left(\frac{1}{\tau} \right)' \right] \]

\[+ \frac{\tau}{\kappa} x \left(\frac{B'}{B\tau} - \frac{d_3}{Bx} \right) (y - \frac{d_1}{B}) \]
The intersection of this surface with the plane which is parallel to \((x, z)\) plane and which passes through the focus of the parabola (11), are the lines given by

\[nx^2 = tzx - d_1 \left(\frac{1}{B} \right)' x \]

or

\[
\begin{align*}
\begin{cases}
x = O \\
y = \frac{d_1}{B} \text{ and} \\
y = \frac{1}{B} (t)'
\end{cases}
\end{align*}
\]

(20)

The first of these lines is the axis of the pencil of normal planes \(v_\nu\), and the second is parallel to the DARBOUX vector \(\omega = t \dot{t} + z \dot{b}\) of the curve \(k\) and also is the limit position of \(m_\nu\) for \(v \to \infty\). Because, from the first equation of the system (19') we have:

\[u = \frac{x}{v^2 \tau B^2} \]

If this is replaced in the second and third equations we have:

\[y = \frac{d_1}{B} - \frac{x}{v B} \]

\[z = -\frac{d_3 \tau + d_1}{v \tau B^2} + \frac{C}{v^2 \tau B^2} x \]

and for \(v \to \infty\)

\[y = \frac{d_1}{B} \]

\[x = \frac{\tau}{\kappa} z - \frac{d_1}{\kappa} \left(\frac{1}{B} \right)' \]

are deduced.
For this property this line is called the separating generator.

If \(k \) is a Bertrand curve then \((19')\) becomes:

\[
(y - \frac{d_1}{B})^2 + x^2 = \frac{\tau}{\kappa} \frac{\tau d_3}{\kappa B} (y - \frac{d_1}{B})
\]

Again the intersection of this surface with the plane

\[
y = \frac{d_1}{B}
\]

we have the lines given by:

\[
x^2 = \frac{\tau}{\kappa} xx
\]

or

\[
\begin{cases}
x = 0 & \text{and} \\
y = \frac{d_1}{B}
\end{cases}
\]

the first being the axis \(m \) and the other a generator parallel to the vector \(\vec{\delta} = \vec{\tau} t + \vec{\kappa} b \) (the separating generator).

The parameter of distribution of the ruled surface \(\Psi_{m_v} \) along the generator \(m_v \) is:

\[
\lambda_{m_v} = -\frac{d_1 \cdot \{ v^2 \tau^2 B^2 (1 + v^2 B^2) + [\kappa (1 + v^2 B^2) + vB']^2 \}}{B \cdot \{ v^4 \tau^2 B^4 + \kappa^2 (1 + v^2 B^2)^2 + v^3 B^2 B' (4 \kappa + vB') \}}
\]

This shows that \(\Psi_{m_v} \) is a skew surface. If \(k \) is a Bertrand curve, as \((23) \) remains unchanged, the surface is still a scroll. For the surface \(\Psi_{m_v} \) to be a developable \(d_3 = 0 \). The special case for \(d_3 = 0 \) has been investigated by Hans Vogler [1]. These properties can be given as a theorem.

Theorem XI. The polar axis \(m_v \) of the parametric curve \(C_v \) of the surface \((d)_0 \) passing through the
point \(P_v \) of the generator \(d \) generates a quadric skew surface at an instant \(t \). The intersection of this surface with the plane are the straight lines: (i) \(x = 0, \ y = \frac{d_1}{B} \) parallel to the polar axis of \(k \), and the other: (ii) \(x = \pi - d_1 \left(\frac{1}{B} \right)' \), \(y = \frac{d_1}{B} \) parallel to the DARBOUX vector \(\mathbf{W} = \mathbf{t} + \mathbf{b} \).

IV. The Osculating Planes of the Curves \(C_v \).

If \(\varphi \) is the angle between the tangent plane of the surface \((d)_0\) at the point \(P_v \), and the osculating plane of the parametric curve \(C_v \) passing through \(P_v \), taking \(A = d_1 \tau + d_3 \alpha \) we have:

\[
(24) \quad \tan \varphi = \frac{d_3 (x + vB') + v^2 B^2 A}{vB (B + v^2 B^3 + d_1 vB')} \sqrt{1 + v^2 B^2}
\]

If \(k \) is a Bertrand curve then \(B' = 0 \) and the above formula is reduced to:

\[
(24') \quad \tan \varphi = \frac{d_3 x + v^2 B^2 A}{vB^2 \sqrt{1 + v^2 B^2}}
\]

As it is given by theorem II, the tangents \(t_v \) of the curves \(C_v \) at instant \(t \) are the torsal lines of the surfaces generated by the straight lines fastened to \(D \). Therefore the tangents \(t_v \) belong to the quadratic ray complex \(Q_0 \) formed by the tangents of the orbit. The tangent \(t_v \) at an instant \(t \) is the generator of the torse (T). The angle \(\varphi^* \) between the tangent planes of the developable (T) and the surface \((d)_0\) at the point \(P_v \) is:

\[
(25) \quad \tan \varphi^* = \frac{d_3 x + v^2 B^2 A}{vB \sqrt{1 + v^2 B^2}}
\]
at the instant t both \(\kappa \) and \(\tau \) can be taken as constants so \(B' = O \). (25) is the same of (24'). The relation between the angles \(\varphi \) and \(\varphi^* \) found in (24) and (25) is:

\[
(26) \quad \cotg \varphi - \cotg \varphi^* = \frac{d_1 v^2 BB'}{[d_3 (\kappa + vB') + v^2B^2A] \sqrt{1 + v^2B^2}}
\]

Thus we can give the following theorems:

Theorem XII. The osculating plane of the parametric curve \(C_v \) traced on the surfaces \((d)_0\) coincides with the torsal plane which corresponds to the torsal line \(\mathbf{t}_v \) of \(C_v \) if and only if \(\kappa \) and \(\tau \) are stationary.

Theorem XIII. If \(k \) is a Bertrand curve then the osculating plane of the parametric curve \(C_v \) of the surface \((d)_0\) coincides with the torsal plane corresponding to the torsal lines \(\mathbf{t}_v \) of \(C_v \).

Theorem XIV. The osculating plane of the parametric curves \(C_v \), traced on the surface \((d)_0\) generated by the binormals \(\mathbf{b} \) of a space curve \(k \), coincides with the torsal plane corresponding to the torsal line \(\mathbf{t}_v \) of \(C_v \).

If the space curve \(k \) is taken such that the osculating plane of the parametric curve \(C_v \) at the point \(P_v \), at the Frenet trihedron \(D \) of the curve \(k \) than as the vectors \(\mathbf{t}_v \) and \(\mathbf{b}_v \) will be tightly fastened to \(D \), from (6') and (17) the first and second curvatures \(\kappa \) and \(\tau \) of the curve \(k \) shall be constant. We have the following theorem:

Theorem XV. If the space curve \(k \) is a circular helix then the osculating planes of the parametric curve \(C_v \) of the suryface \((d)_0\), is tightly
fastened to the Frenet trihedron D of the curve k.

Now consider the set of the osculating planes of the curves C_{ν} traced by the points of a generator d of the surface $(d)_0$. If ∞ denotes the osculating plane of the curve C_{ν}, its equation referred to the system D will be

$$v^2 B^2 \tau x - vB \tau y + cz = d_1 v^3 B^2 \tau + vd_3 c$$

u_0, u_1, u_2, u_3 being the homogeneous coordinates of ∞ we have:

$$u_0 : u_1 : u_2 : u_3 = - \{ d_1 v^3 B^2 \tau + vd_3 c \} : v^2 B^2 \tau : \infty$$

In the particular case when k is a Bertrand curve then $B' = 0$ and from (28) we have:

$$u_0 : u_1 : u_2 : u_3 = - \{ d_1 v^3 B^2 \tau + vd_3 \chi (1 + v^2 B^2) \} : v^2 B^2 \tau : vB \tau : \infty (1 + v^2 B^2)$$

Thus:

Theorem XVI. The osculating developable at the points of the curves C_{ν} passing through the points P_{ν} of a generator d of the surface $(d)_0$ is a surface generated by the tangents of a cubic parabola.

In view of theorem XII, the tangent planes ∞ of (T), which correspond to the generators t_{ν} will coincide with the osculating planes ∞ at the points where χ and τ of k are stationary, so the envelope of ∞ will also be the surface generated by the tangents of cubic parabola.

Consider the transformation which will transform the osculating planes ∞ to the torsal planes ∞: The equation of ∞ is:

$$v^2 B^2 \tau x - vB \tau y + cz = d_1 v^3 B^2 \tau + vd_3 c$$

The equation of ∞ is:
\[
(30) \ v^2B^2 \tau \rho x - vB \tau y + (1 + v^2B^2) z = d_v v^3B^2 \tau \rho + d_v(1 + v^2B^2) \\
\]

\[\bar{u}_0, \bar{u}_1, \bar{u}_2, \bar{u}_3,\] being the plane homogeneous coordinates, the connection between \(u_i\) and \(\bar{u}_i\) will be

\[
\begin{align*}
\bar{u}_0 &= \rho \left(u_0 - d_v \frac{B'}{B^2 \tau} u_1\right) \\
\bar{u}_1 &= \ldots \ldots \ldots \ldots \rho u_1 \\
\bar{u}_2 &= \ldots \ldots \ldots \ldots \rho u_2 \\
\bar{u}_3 &= \ldots \ldots \ldots \ldots \rho \left(-\frac{B'}{B \tau} u_2 + u_3\right)
\end{align*}
\]

\(x_i\) and \(\bar{x}_i\) being the homogeneous coordinates of the points of \(\infty\) and \(\bar{\infty}\) respectively, from (31) we have:

\[
\begin{align*}
x_0 &= -d_v B' \rho \bar{X}_0 \\
x_1 &= -\rho \frac{B'}{\tau B^2} \bar{X}_0 + \rho \bar{X}_1 \\
x_2 &= \ldots \ldots \ldots \ldots \rho \bar{X}_2 - \rho \frac{B'}{\tau B} \bar{X}_3 \\
x_3 &= \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \rho \bar{X}_3
\end{align*}
\]

The characteristic equation which gives the double points of this transformation is \((\rho - 1)\rho = 0\), which has four equal real roots. This shows that we have four different cases, either one double point or all the points of a line or all the points of a plane or all the points of the space will correspond for each root \([4]\). For the planes \(\infty\) and \(\bar{\infty}\) the second case is valid. The center of this transformation is the point

\[
(x_i) = (0, 0, 1, 0)
\]

This infinitely distant point is at the same time on the constant plane

\[
(u_i) = (0, 0, 0, 1),
\]
Thus the planes ω and ω' correspond by an affine perspective.

V. The Principal Normals \mathbf{n}_ν and The Binormals \mathbf{b}_ν of The Curves C_ν.

In this paragraph we will try to investigate closely the principal normals \mathbf{n}_ν and the binormals \mathbf{b}_ν of the curves C_ν at the points P_ν of a generator d of the surface $(d)_0$.

The explicit expressions for the vectors \mathbf{t}_ν, \mathbf{n}_ν, \mathbf{b}_ν are:

$$\mathbf{t}_\nu = \mathbf{t} + B \nu \mathbf{n}$$

$$\mathbf{n}_\nu = -\nu B C \mathbf{t} + C \mathbf{n} + B \nu (1 + v^2 B^2) \mathbf{b}$$

$$\mathbf{b}_\nu = B^2 \nu \mathbf{v} - B \nu \mathbf{n} + C \mathbf{b}$$

By the following stage by stage operations the Frenet trihedron D of the curve k and D_ν of the curve C_ν can be put on each other:

a) The vertex P of D will be moved along the generator d of the surface $(d)_0$ to a distance ν,

b) The tangent vector \mathbf{t} of D will be rotated around the new vertex P_ν at an angle Ψ, where $\tan \Psi = B \nu$.

c) The osculating plane of D will be rotated about \mathbf{t}_ν at angle δ where

$$\tan \delta = \frac{B \nu \sqrt{1 + v^2 B^2}}{\nu + B' v + B^2 v^2 \nu}$$

The generators \mathbf{n}_ν of the ruled ψ_n and the axis m of the theorem IX are in the same normal plane v_ν of C_ν as they are not parallel, they intersect at a point R_ν (fig. 4) The lines \mathbf{n}_ν also intersect the line d at the points P_ν. The generator d of the surface $(d)_0$ and the line m parallel to the polar axis of the
curve k are the directrix lines (directrix curves) of the ruled surface Ψ_n. Thus Ψ_n is a net of rays of the hyperbolic type [2].

![Diagram](image)

Fig. 4

The generator d of the surface $(d)_0$ in terms of the parameter v is:

\[(x_i) = (d_1, v, 0, d_3, v)\]

And the line m in terms of parameter w is:

\[(x_i) = (0, \frac{d_1}{B}, w)\]

so the relation between the directrix lines d and m because of

\[\overrightarrow{P_vR_v} = \lambda \, \overrightarrow{n_v}\]

is given by:

\[(35) \quad d_1 \tau v (1 + v^2 B^2) = (w - d_3, v) C\]

Here to every value of v there corresponds a value of w and to every value of w there are three different corresponding values of v. Thus the generator d of the surface $(d)_0$ is a simple directrix of Ψ_n and the line m is a multiple directrix of order three (fig. 5). The equation of the surface Ψ_n referred to the system D is:
(36) \(z(d_i - By) [(d_i - By)^2 x + (d_i - By) B'x + B^2 x'^2 \tau] = -d_x [(d_i - By)^2 x + (d_i - By) B'x + B^2 x'^2 \tau] + xy B^2 [(d_i - By)^2 + B^2 x'^2] \)

thus we have the theorem:

![Diagram](image)

Fig. 5

Theorem XVII. The principal normals \(\vec{n}_v \) of the curves \(C_v \) passing through the points \(P_v \) of the generator \(d \) of the surface \((d)_0\) are on a surface of rays \(\Psi_n^r \) of the degree four. The multiple tangent planes of order three of the surface \(\Psi_n^r \) pass through the generator \(d \) of the surface \((d)_0\) and the line \(m \) is the multiple directrix line of order three.

If \(k \) is a Bertrand curve then the equation (36) can be factorized as:

(36') \([(d_i - By)^2 + B^2 x'^2].[x(d_i z - d_i x) - By(xz + tx)] = 0 \)

From the first factor we have:

(37) \(\frac{d_i}{B} - y = \pm i \ x \)

which means that the surface \(\Psi_n^r \) is degenerated into two pencil of rays by isotropic planes. The vertex of the pencil being

(38) \((\pm i \frac{d_i}{B}, 0) \)

corresponding to the value of the parameter:
(39) \[v = \pm \frac{d_1}{B} \]

From the second factor

\[(d_1 z - d_3 x) \chi - B (\kappa z + \tau x) \gamma = 0 \]

it can be deduced that the surface \(\Psi_\alpha \) is transformed into a hyperbolic paraboloid

In this particular case \(B' = 0 \) therefore (35) becomes:

\[A' = \chi \nu \]

Thus for the particular case of \(B' = 0 \) the points of the directrix lines \(d \) and \(m \) are mapped by the generators \(\vec{n}_\nu \) bi-univocally.

Let \(\Psi_b \) denote the ray surface generated by the binormals \(\vec{b}_\nu \) of the curves \(C_\nu \). From (fig. 4) it is easily seen that this surface too has the generator \(d \) of the surface \((d)_b \) and the line \(m \) parallel to the polar axis of the curve \(k \) as directrix lines. These two directrix lines are expressed in terms of the parameters \(\nu \) and \(\omega \) by (33) and (34); this shows that the points of these lines correspond through the generators \(\vec{b}_\nu \) of the surface \(\Psi_b \) by:

\[B' \nu^2 + (d_1 B' + B^2 \tau \omega) \nu + d_1 \kappa = 0 \]

so that the generator \(d \) of the surface \((d)_b \) is a simple directrix line of \(\Psi_b \) and the line is a multiple directrix line of order two. (41) gives for every value of \(\omega \) two values of \(\nu \). Generally these two values of \(\nu \) are different. For some values of \(\omega \) the values of \(\nu \) be equal; the points corresponding to these value are the cuspidal points. For the cuspidal points from (41) we have

\[w_{1,2} = \frac{d_1 B'}{B^2 \tau} \pm \sqrt{\frac{4 d_1 \kappa B^3}{B^2 \tau}} \]

and the values of \(\nu \) corresponding to these values of \(\omega \) are:

\[v_{1,2} = \pm \sqrt{\frac{d_1 \kappa}{B^2}} \]
The values of w given by (42) are the distances between the surface Ψ_b and the cuspidal points of the tangent planes ∞ of the surface $(d)_0$ (43) shows that the cuspidal points are real.

The equation of the surface Ψ_b referred to the system D

$$ (d_i-By) [xy(d_i-By) + B'xy + B\tau x] + B'x^2y = 0 $$

is a surface of degree three. Thus we have the theorem:

Theorem XVIII. The binormals \vec{b}_ν of the curves C_ν passing through the points P_ν of a generator d of the surface $(d)_0$ are on a surface of rays Ψ_b of the degree three. The line d is a simple directrix and the line m is a multiple directrix of order two.

In the particular case k being a Bertrand curve the distance between Ψ_b and the cuspidal points of the tangent planes ∞ of the surface $(d)_0$ from (42) is:

$$ (42') \quad w_{1,2} = \pm \frac{2}{\tau} \sqrt{\frac{d_1 \kappa}{B}} $$

In this particular case the intersection of the surface of rays with the infinitely distant plane (infinitely distant curve) is interesting to study. In order to do it in (44) substituting $B' = 0$ and using the homogeneous coordinates for the surface of rays Ψ_b we have:

$$ (44') \quad (d_1x_0-Bx_2) (d_1xx_0-\kappa Bx_0^2+B\tau x; x_3) + Bxx_1x_2 = 0 $$

The infinitely distant curve (the intersection by the plane $x_0 = 0$) is given by:

$$ (44'') \quad Bx_2[\kappa(x_0^2+x_3^2)-\tau x_0 x_3] = 0 $$

From which we have:

$$ (45) \quad \begin{cases} x_0 = 0 \\ x_2 = 0 \end{cases} $$
and

\[
\begin{align*}
 x_0 & = O \\
 x_1^2 + x_2^2 & = \frac{\tau}{\kappa} x_1 x_3
\end{align*}
\]

(46)

The first one is the infinitely distant line of the rectifying plane of the curve \(k \); and the second is the infinitely distant conic of the right cone given by the equation

\[
x_1^2 + x_2^2 = \frac{\tau}{\kappa} x_1 x_3
\]

VI. The rectifying planes of the curves \(C_v \).

In this paragraph we shall investigate the rectifying planes \(\rho_v \) of the curves \(C_v \) at points \(P_v \) of a generator \(d \) of the surface \((d)_0 \).

The equation of one of the rectifying planes \(\rho_v \) referred to the system \(D \) is:

\[
(47) \quad -Bvux + cy + B\tau v(1 + Bz^2)x = d_3 B\tau v(1 + Bz^2) - d_1 Bv^2 C
\]

The rectifying planes \(\rho_v \) being family of one parameter \(v \) their envelope is a torse. Because of the degree of the parameter \(v \) is four the envelope of the planes \(\rho_v \) is a torse of degree four.

If the curve \(k \) is a Bertrand curve (47) becomes:

\[
(47') \quad (1 + v^2 B^2) (-Bvux + cy + B\tau vx + Bz^2) = O
\]

From the first factor we have

\[
(48) \quad v = \pm i \frac{1}{B}
\]

which shows that the rectifying planes of the two curves \(C_v \) corresponding to these values of the parameter are indefinite. One the other hand the points \(P_v \) corresponding to the values

\[
v = \pm i \frac{1}{B}
\]
are \(P_v \left(\pm i \frac{d_1}{B}, 0, \pm i \frac{d_3}{B} \right) \); the projections of these points on the plane \(z = 0 \) being the same as (38), the rectifying planes \(\rho \), corresponding to the parameter values \(v = \pm i \frac{1}{B} \) under the condition \(z = 0 \) verify the isotropic planes of the surface \(\mathcal{Y} \) under the particular condition \(B' = 0 \).

The envelopes of the rectifying planes corresponding to the values of \(v \) other than the values \(v = \pm i \frac{1}{B} \) are:

\[
(49) \quad y = \frac{\rho}{4} \left(-xx + \tau z \right)^2
\]

which is obtained by eliminating \(v \) in between the second factor of \((47') \) and its derivative with respect to \(v \). It is a parabolic cylinder whose geneators are parallel to the vector \(\vec{\delta} = \vec{\tau t} + \vec{\tau b} \) the DARBOUX vector of the surface \((d)_0\).
REFERENCES

ÖZET

Bu çalışmada bir uzay eğrisinin, Frenet yüzüzlüsünün egrisi boyunca hareketi es- nasında, rektifiyeyorsa düzleme sıkı surette bağlı bir doğrunun tevild ettiği açılımın bir yüzey üzerine çizilmiş parametre eğrilerinin (sabit sırt uzaklık eğrilerinden daha genel) FRENET yüzüzlülerinin elementleri tarafından tevild edilen varyeteler incelen- miştir. Bu suretle Hans Vogler’in bulduğu sonuçların daha genel hallerde de mümkün olabileceğini gösterilmiştir.
Prix de l'abonnement annul 1967:

Turquie : 15 TL ; Etranger : 30 TL.
Prix de ce numéro : 5 TL (paurla vente en Turquie).
Prière be s'adresser pour l'abonnement à : Fen Fakültesi Dekanlığı
Ankara Turquie.