Characterizations of Spherical Curves in Euclidean n-Space

by

E. ÖZDAMAR – H. H. HACISALİHOĞLU

Faculté des Sciences de l'Université d'Ankara
Ankara, Turquie
La Revue “Communications de la Faculté des Sciences de l’Université d’Ankara” est un organe de publication englobant toutes les disciplines scientifiques représentées à la Faculté: Mathématiques pures et appliquées, Astronomie, Physique et Chimie théorique, expérimentale et technique, Géologie, Botanique et Zoologie.

La Revue, à l'exception des tomes I, II, III, comprend trois séries

Série A : Mathématiques, Physique et Astronomie.
Série B : Chimie.
Série C : Sciences naturelles.

En principe, la Revue est réservée aux mémoires originaux des membres de la Faculté. Elle accepte cependant, dans la mesure de la place disponible, les communications des auteurs étrangers. Les langues allemande, anglaise et française sont admises indifféremment. Les articles devront être accompagnés d'un bref sommaire en langue turque.

Characterizations of Spherical Curves in Euclidean n-Space

E. ÖZDAMAR H. H. HACISALIHOĞLU

Department of Mathematics, Univ. of Ankara
(Received Dec. 12, 1974)

ABSTRACT:

We give the characterizations for the regular curves each of which lies on the \((n-1)\)
sphere \(S^{n-1}\) of \(n\) dimensional Euclidean Space \(E^n\). We express these characterizations
in the higher curvatures of the curves.

I. Basic Concepts.

Theorem I.1: If \(X\) is a parametrized curve in \(n\) dimensional
Euclidean space \(E^n\) then \(X\) can always be parametrized by an arc length parameter \([1]\).

Theorem I.1 says that, in general, we can have the arc-length
parametrized curve \(X (s)\) with arc-length parameter \(s\) as a para-
metrized curve in \(E^n\).

Let \(I\) be an open interval in the real line \(\mathbb{R}\). We shall inter-
pret this liberally to include not only the usual type of open interval
\(a < s < b\) (\(a, b\) real numbers), but also the types of \(a < s\) (a half
line to \(+ \infty\)), \(s < b\) (a half-line to \(- \infty\)), and also the whole real
line. Henceforth we denote an arc-length parametrized curve
of \(E^n\) by a map \(X: I \rightarrow E^n\) which is a \(C^\infty\) parametrization by arc-
length.

We assume that at each point \(X (s)\), of the curve \(X: I \rightarrow E^n\),
the derived vectors
\[
\{X', X'', \ldots, X^{(r)}\}
\]
are linearly independent, where
\[
X' = \frac{dX}{ds} (s), \quad X'' = \frac{d^2X}{ds^2} (s), \quad \ldots, \quad X^{(r)} = \frac{d^rX}{ds^r} (s).
\]
Therefore there exists an algorithm, called the Gramm-Schmidt process, for converting $X', X'', ..., X^{(r)}$ into an orthonormal basis
\[\{V_1, V_2, \ldots, V_r\} \]
of the tangent space $T_{E^n}(X(s))$ of E^n at the point $X(s) \in E^n$. This system is called the Frenet r-handed (or r-frame) of the curve X at the point $X(s)$ [2].

If we denote the inner product (dot product) $E^n \times E^n \to |R$ over E^n by $<, >$ we have
\[<V_i, V_j> = \delta_{ij} \]
and then the derivatives of the frame vectors satisfy the following Frenet equations.

\[
\begin{align*}
V'_i & = -k_{i-1} V_{i-1} + k_i V_{i+1}, \quad 2 \leq i \leq r-1 \\
V'_1 & = k_1 V_2, \\
V'_r & = -k_{r-1} V_1,
\end{align*}
\]

where $k_i, 1 \leq i \leq r-1$, is the curvature, with order i, of the curve X at its point $X(s)$ [2]. These formulae (I.1) are called the Frenet Formulae which give us the derived vectors $V'_i, 1 \leq i \leq r$. Then we mention the following theorem which is important in Chapter III.

Theorem I.2: Let $X: I \to E^n$ be a regular curve. At the point $X(s)$ of it if Frenet n-frame is
\[\{V_1, V_2, \ldots, V_n\} \]
then we have
\[X^{(p)} = \sum_{j=1}^{p} a_j V_j, \quad 1 \leq p \leq n, \]
where $a_j \in |R$.

Proof: We use the induction process:

(i) Since the curve is given by its arc-length parameter s, $X' = V_1$. Therefore if $p = 1$ the theorem is trivial.

(ii) Let us suppose that the theorem is proved for the cases
$1 \leq r < n$. Then we prove that the theorem is also valid for the case $p = r+1$.

Since we can write

$$X^{(r)} = \sum_{j=1}^{r} a_j V_j$$

differentiating this, with respect to s, we obtain

$$X^{(r+1)} = \sum_{j=1}^{r} a_j' V_j + \sum_{j=1}^{r} a_j V_j'$$

Using Equations (1.1) this gives us

$$X^{(r+1)} = \sum_{j=1}^{r} \left[a_j' V_j + a_j (-k_{j-1} V_{j-1} + k_j V_{j+1})\right]$$

where if we write that

$$b_1 = a_1' - k_1 a_2,$$
$$b_j = a_j' + a_{j-1} k_{j-1} - a_{j+1} k_j \quad 2 \leq j \leq r-1,$$
$$b_r = a_r' + a_{r-1} k_{r-1},$$
$$b_{r+1} = a_r k_r,$$

then we obtain

$$X^{(r+1)} = \sum_{j=1}^{r+1} b_j V_j$$

which completes the theorem.

II. Osculating p-Spheres S^p and The Curvature Lines.

Definition II.1: The p-sphere S^p in E^n which passes through $X(s)$ and is in contact with the curve having $p+2$ points in common at the point of contact $X(s)$ is called the osculating p-sphere to the curve at $X(s)$.

At any given point, the curve has exactly p-th order contact with its osculating p-sphere for $p = r$.
We suppose that at the point $X(s)$ of the curve $k_{n-1} \neq 0$ and then we will educate the osculating sphere S^{n-2}. In order to do this we will need the following theorem.

Theorem II.1: Let $k_{n-1} \neq 0$ at every point $X(s)$ of a curve $X: I \rightarrow E^n$. Then at the point $X(s)$ of the curve the center of $(n-2)$-osculating sphere S^{n-2} is

$$a = X - \sum_{i=1}^{n-2} m_i V_i + \lambda V_n, \quad a \in E^n,$$

where $\lambda \in \mathbb{R}$ and $m_1 = 0, m_2 = -1/k_1$ and

$$m_i = \{ m'_{i-1} + m_{i-2} k_{i-2} \} \frac{1}{k_{i-1}}, \quad 2 < i < n.$$

Proof: Suppose that at the point $X(s)$ there is at least one $(n-2)$-osculating sphere with the center $a \in E^n$ and radius $r \in \mathbb{R}$. In this case let define the function $f: I \rightarrow \mathbb{R}$ as

$$f(s) = \langle X(s) - a, X(s) - a \rangle - r^2.$$

Since $X(s) \in S^{n-2}$, we have

$$f(s) = 0.$$

On the other hand, if $X(s)$ is a second order contact point of the curve and the osculating sphere S^{n-2} for the case $\forall s_j \rightarrow s$ then we have

$$f(s_1) = 0$$

$$f(s_2) = 0,$$

where $s_1, s_2 \in I$. Applying the mean value theorem to these equations we obtain $f(s) = 0$ and $f'(s) = 0$. Similarly, if $X(s)$ is a n-th order point of the curve and the osculating sphere S^{n-2} for the case $\forall s_j \rightarrow s$

we have

$$f(s_j) = 0, \quad 1 \leq j \leq n; \quad s_j, s \in I$$

$$f(s) = 0,$$

and from the mean value theorem

$$f(s) = 0, \quad f'(s) = 0, ..., \quad f^{(n-1)}(s) = 0.$$
Since $k_{n-1} \neq 0$ we can imagine that Frenet n-frame is exist at the point $X(s)$ of the curve. Hence, \{V_1, V_2, \ldots, V_n\} is a basis of tangent space $T_{F^n}(X(s))$ and $(X(s)-a) \in T_{F^n}(X(s))$ can be expressed, in a unique way, as

$$X(s)-a = \sum_{i=1}^{n} m_i V_i, \\forall m_i \in \mathbb{R}.$$

Replacing (II.1) in (II.2) we obtain

$$f'(s) = 2 \langle X'(s), X(s)-a \rangle = 0.$$

On the other hand s is arc-length parameter and so $V_1 = X'$. Hence

$$\langle V_1, X(s)-a \rangle = 0.$$

and then $m_1 = 0$ so

$$X(s)-a = \sum_{i=2}^{n} m_i V_i.$$

In Equation (II.1) since $f''(s) = 0$ and using the Frenet formulae we obtain that

$$\frac{1}{2} f''(s) = \frac{d}{ds} (\langle V_1, X(s)-a \rangle) = 0$$

and then

$$\langle k_1 V_2, X(s)-a \rangle + \langle V_1, V_1 \rangle = 0$$

$$k_1 \langle V_2, X(s)-a \rangle + 1 = 0$$

$$m_2 = -1/k_1.$$

Hence the theorem is proved for the coefficients m_i.

From the Equations (II.2) one can write

$$f'''(s) = 2 \langle X'''(s), X(s)-a \rangle = 0.$$

On the other hand differentiating the equation

$$X' = V_1$$

according to s and using the Frenet Formulae we obtain that

$$X'' = k_1 V_2$$

$$X''' = -k_1^2 V_1 + k_1' V_2 + k_1 k_2 V_3.$$
Replacing the last equation in \(f'''(s) = 0 \) and using (II.3) we have

\[
- k_1^2 V_1 + k'_1 V_2 + k_1 k_2 V_3, \quad \sum_{i=2}^{n} m_i V_i > = 0
\]

or

\[
k'_1 m_2 + k_1 k_2 m_3 = 0.
\]

Since \(m_2 = -1/k_1 \) for \(m_3 \) we can have

\[
m_3 = m'_2 / k_2
\]

and the theorem is also proved for the case \(i = 3 \).

Suppose that the theorem is valid for the cases for \(p \) such that \(2 < p < n-1 \) and then we will prove it for the case \(p+1 \).

Let define a function \(\Psi_p(s) \) by the equation

\[
(II.3) \quad f^{(p)}(s) = < X^{(p)}(s), X(s) - a > + \Psi_p(s).
\]

From the derivative of

\[
f'(s) = 2 < X'(s), X(s) - a >
\]

we can see that in the expression of \(f^{(p)}(s) \) the derivatives higher than \(X^{(p)}(s) \) do not exist. From the Theorem (I.2) we can write

\[
(II.4) \quad X^{(p)}(s) = \sum_{j=1}^{p} a_j V_j, \quad \forall a_j \in \mathbb{R}.
\]

Replacing (II.3) and (II.4) in the Equation \(f^{(p)}(s) = 0 \) we have

\[
< \sum_{j=1}^{p} a_j V_j, \sum_{j=2}^{n} m_j V_j > + \Psi_p(s) = 0
\]

or

\[
\sum_{j=2}^{p} m_j a_j + \Psi_p(s) = 0.
\]

Therefore we have

\[
(II.5) \quad m_p = - \frac{1}{a_p} \left[\sum_{j=2}^{p-1} m_j a_j + \Psi_p(s) \right].
\]

Differentiating the Equations (II.3) and (II.4) we have, respectively,
$f^{(p+1)} (s) = < X^{(p+1)} (s), X (s) - a >$

$+ < X^{(p)} (s), V_1 > + \Psi'_p (s) = 0$

and

$X^{(p+1)} (s) = (a'_1 - k_1 a_2) V_1 + \sum_{j=2}^{p-1} (a'_j + a_{j-1} k_{j-1} - a_{j+1} k_j) V_j$

$+ (a'_p + a_{p-1} k_{p-1}) V_p + a_p k_p V_{p+1}$.

Hence replacing the values of $X^{(p+1)} (s)$ and $X(s) - a$ in $f^{(p+1)} (s) = 0$ we have

$\sum_{j=2}^{p-1} (a'_j + a_{j-1} k_{j-1} - a_{j+1} k_j) m_j + (a'_p + a_{p-1} k_{p-1}) m_p$

$+ a_p k_p m_{p+1} + a_1 + \Psi'_p (s) = 0$

From the last equation, calculation gives us that the value of m_{p+1} is

$m_{p+1} = - \frac{1}{a_p k_p} \{ \sum_{j=2}^{p-1} (a'_j + a_{j-1} k_{j-1} - a_{j+1} k_j) m_j$

$+ (a'_p + a_{p-1} k_{p-1}) m_p + a_1 + \Psi'_p (s) \}$.

And from the Equation (II.5) differentiation gives us that

$m'_p = - \frac{1}{a_p} \{ \sum_{j=2}^{p-1} (a'_j + a_{j-1} k_{j-1} + a_{j+1} k_j) m_j$

$+(a'_p + a_{p-2} k_{p-2}) m_{p-1} + (a'_p + a_{p-1} k_{p-1}) m_p + a_1 + \Psi'_p (s) \}$.

Hence we can write

$(II.6) \quad m_{p+1} = \{ m'_p + m_{p-1} k_{p-1} \} \frac{1}{k_p}$

and since we obtain m_{p+1} from the equation $f^{(p+1)}(s) = 0$ the coefficients $m_2, m_3, \ldots, m_{n-1}$ are determinant in an equation like (II.6). $m_n = \lambda \in \mathbb{R}$ is a parameter. ■

Corollary I: At any point $X(s)$ of a regular curve $X:I \to E^n$ if $k_{n-1} \neq 0$ then all the centers of $(n-2)$ osculating spheres S^{n-2} are collinear.
Proof: From the Theorem (II.1) the center of S^{n-2} at $X(s)$ is

$$a = X(s) - \sum_{i=2}^{n-1} m_i V_i - \lambda V_n, \quad \lambda \in \mathbb{R},$$

where,

$$m_2 = -1/k_1, \quad m_i = \left\{m'_{i-1} + m_{i-2}k_{i-2}\right\} \frac{1}{k_{i-1}}.$$

For $\forall s \in I$, $m_i, V_i, X(s)$ are constant. Hence a, the center of $(n-2)$-osculating sphere S^{n-2}, lies on the straight line which passes through the point $X(s) - \sum_{i=2}^{n-1} m_i V_i$ and parallel to the vector V_n. ■

Definition (II.2): Let $X: I \rightarrow \mathbb{E}^n$ be a given regular curve. The locus of the centers of $(n-2)$-osculating skteres S^{n-2} is called the curvature line of the curve, at the point $X(s)$.

Corollary II. At any point $X(s)$ of a regular curve $X: I \rightarrow \mathbb{E}^n$ if $k_{n-1} \neq 0$ then the center of $(n-1)$-osculating sphere S^{n-1} is

$$a = X(s) - \sum_{i=2}^{n} m_i V_i$$

where, $m_1 = 0$, $m_2 = -1/k_1$ and

$$m_i = \left\{m'_{i-1} + m_{i-2}k_{i-2}\right\} \frac{1}{k_{i-1}}, \quad 2 < i \leq n.$$

Proof: According to Definition (II.1) the point $X(s)$ is a $(n+1)$-th order contact point of the curve X and its $(n-1)$-osculating sphere. Therefore we have the expressions (II.2) and also $f^{(n)}(s) = 0$. Hence we can repeat here the same proof of Theorem (II.1). ■

Corollary III. If $\forall k_{n-1} \neq 0, s \in I$, for the curve $X: I \rightarrow \mathbb{E}^n$ then at the point $X(s)$ the osculating sphere S^{n-1} is unique and its radius is $r = (\sum_{i=2}^{n} m_i^2)^{1/2}$.

Proof: According to Corollary II the center of $(n-1)$-osculating sphere S^{n-1} is unique so S^{n-1} is unique.
At the point \(X (s) \) the radius \(r \) of osculating sphere \(S^{n-1} \) is
\[
r = \| a - X (s) \|.
\]
From the corollary II we have
\[
r = \| a - X (s) \| = \| \sum_{i=1}^{n} m_i V_i \|
\]
\[
= \left(\sum_{i=1}^{n} m_i^2 \right)^{1/2}.
\]

III. Spherical Curve of \(E^n \) and Its Characterization.

In this paragraph we will give a necessary and sufficient condition for a curve of \(E^n \) to be a spherical curve.

Definition III. 1: Let \(X: I \to E^n \) be a curve and \(S^p \subset E^n \) be a \(p \)-sphere. If \(X \subset S^p \) then \(X \) is called a spherical curve in \(E^n \).

The case \(p=n-1 \) is supposed in this paragraph. Because of \(S^p = S^{n-1} \cap H_{n(p+1)} \) every curve \(X \) of \(S^p \) in \(E^n \) lies in a \((p+1)\)-hyperplane \(H_{n(p+1)} \) [3] so this case is not a special case. Since a \((p+1)\)-hyperplane is isomorphic to Euclidean \((p+1)\)-space \(E^{p+1} \), a curve of \(S^p \) can be taken as another curve of another sphere \(S^p_0 \subset E^{p+1} \). Hence \(X \subset S^p \subset E^n \) so we can see that \(k_{p+1} \neq 0 \). Therefore we can only suppose the curves of \(S^{n-1} \) whose curvature \(k_{n-1} \neq 0 \).

Theorem III. 1: Let \(X: I \to E^n \) be a regular curve such that
\[
k_{n-1} \neq 0, \forall s \in I, m_1 = 0, m_2 = -\frac{1}{k_1}
\]
\[
m_i = \{ m'_{i-1} + m_{i-3} k_{i-2} \} \cdot \frac{1}{k_{i-1}}, 2 < i \leq n,
\]
and \(X \subset S_0^{n-1} \); where \(S_0^{n-1} \) is an \((n-1)\)-sphere with the center \(O \). Then
\[
< X (s), V_i > = m_i
\]
where \(\{ V_1, V_2, \ldots, V_n \} \) is the Frenet \(n \)-frame at the point \(X (s) \) of the curve.
Proof: We apply the induction process:

If \(i = 2 \) and the radius of \(S^n_0 \) is \(r \) we can write

\[
< X(s), X(s) > = r^2
\]

and then from this by differentiation, with respect to \(s \),

\[
< X(s), X'(s) > = 0
\]

or

\[
< X''(s), X(s) > + < X'(s), X'(s) > = 0
\]

or

\[
< X''(s), X(s) > + 1 = 0.
\]

On the other hand since we know that \(V_2 = X''(s) / \| X''(s) \| = k_1 \) [2] we can have

\[
k_1 < V_2, X(s) > = -1
\]

or

\[
< V_2, X(s) > = -1 / k_1 = m_2
\]

which proves the theorem in the case \(i = 2 \).

Suppose that the theorem is proved in the cases \(p < n \). Then we can write

\[
< X(s), V_p > = m_p
\]

which gives us, by differentiation, with respect to \(s \),

\[
< V_1, V_p > + < X(s), V'_p > = m'_p
\]

in this last equation, replacing the Frenet Formulae (I,1) we have

\[
< X(s), V_{p+1} > = \{ m'_p + m_{p-1}k_{p-1} \} \frac{1}{k_p}
\]

\[
< X(s), V_{p+1} > = m_{p+1}
\]

which completes the theorem. ■

Theorem III. 2: Let \(X: I \to \mathbb{E}^n \) be a given regular curve such that \(k_{n-1} \neq 0 \), \(\forall s \in I \). If \(X \subset S^{n-1}_0 \) then all the \((n-1)\)-osculating spheres of the curve \(X \) coincide with \(S^{n-1}_0 \).

Proof: Suppose that the center of \((n-1)\)-osculating sphere at the point \(X(s) \) of \(X \) is \(a \). From the Corollary II of Theorem II.1 we have
\[a = X(s) - \sum_{j=2}^{n} m_j V_j \]

where \(m_1 = 0, m_2 = -1/k_1, m_i = \left\{ m'_{i-1} + m_{i-2} k_{i-2} \right\} \frac{1}{k_i} \),

\[2 < i \leq n \] and \(\{V_1, V_2, ..., V_n\} \) is the Frenet \(n \)-frame at \(X(s) \) of \(X \). According to Theorem III.1 the expression of \(a \) can be write as

\[a = X(s) - \sum_{j=1}^{n} < X(s), V_j > V_j. \]

Since \(\{V_1, V_2, ..., V_n\} \) is a basis of the tangent space \(T_{E^n}(O) \) we can have

\[X(s) = \sum_{j=1}^{n} < X(s), V_j > V_j \]

and then

\[a = X(s) - X(s) \]

or

\[a = 0 \]

which shows that the centers of \(S_0^{n-1} \) and \((n-1) \)-osculating sphere at \(X(s) \) of \(X \) coincide. On the other hand since \(d(X(s), O) = r \) we see that the theorem is completed. \(\blacksquare \)

Corollary I. If \(S_b^{n-1} \subset E^n \) is an \((n-1) \)-sphere and the curve \(X \) is \(X \subset S_b^{n-1} \) then \((n-1) \)-osculating sphere at the point \(X(s) \) of \(X \) is \(S_b^{n-1} \).

The proof of this corollary can be given in the light of the fact that “The spheres with the same radius are isometric”.

The radius of an \((n-1) \)-osculating sphere of a curve \(X \) depends on the center \(X(s) \) of the sphere. The following theorem makes clear this dependence.

Theorem III.3: Let \(X: I \rightarrow E^n \) be a given regular curve whose \(k_{n-1} \neq 0 \) for \(\forall s \in I \) and let \(m_n \neq 0 \) (see the Corollary II of Theorem II.1). The radii of \((n-1) \)-osculating spheres at \(X(s) \) of \(X \) are constant for \(\forall s \in I \) \(\Leftrightarrow \) The centers of the \((n-1) \)-osculating spheres are the same point.

Proof: We need the following calculation:
As we know, let a (s) and r (s) be, respectively, the center and the radius of (n-1)-osculating sphere at X (s) of the curve X. Since X (s) is a point of the (n-1)-osculating sphere we have
\[< X (s) - a (s), X (s) - a (s) > = (r (s))^2 \]
which gives us, by differentiation with respect to s,

\[(III.1) \quad < V_1, X (s) - a (s) > = - \frac{da}{ds} (s), X (s) - a (s) > = r (s). \frac{dr}{ds} (s). \]

According to Corollary II of Theorem II.1 we have
\[< V_1, X (s) - a (s) > = 0 \]
and replacing this in (III.1) we obtain

\[(III.2) \quad \frac{da}{ds} (s), X (s) - a (s) > = - r (s). \frac{dr}{ds} (s). \]

Now we can give the proof:

(Necessity): Suppose that at every point X (s) of the curve X the radii r (s) are constant. According to Corollary II of Theorem II.1 the radius of (n-1)-osculating sphere at X (s) is

\[r (s) = (\sum_{i=2}^{n} m_i^2)^{1/2} \]

\[r (s) = \text{constant} \Rightarrow \frac{dr}{ds} = 0 \]

and

\[(III.3) \quad \sum_{i=2}^{n} m_i m_i^\prime = 0. \]

From the corollary II of Theorem II.1 since we have
\[m_i = - k_{i-1} m_{i-1} + k_i m_{i+1}, \quad 2 < i \leq n-1. \]

Equation (III.3) reduces to

\[(III.4) \quad m_2 m_2^\prime + \sum_{i=3}^{n-1} m_i [- k_{i-1} m_{i-1} + k_i m_{i+1}] + m_n m_n^\prime = 0 \]

or replacing m_2 = m_3 k_2 in (III.4)
or after some cancellations

\[(\text{III.5}) \quad m_n (m'_n + k_{n-1}m_{n-1}) = 0.\]

Then according to Theorem II.1 we have

\[\frac{da}{ds} (s) = V_1 - \sum_{i=2}^{n} m'_i V_i - \sum_{i=2}^{n} m_i V'_i\]

where replacing (I.1) and (III.4) we obtain

\[(\text{III.6}) \quad \frac{da}{ds} = (m'_n + k_{n-1}m_{n-1}) V_n.\]

From the Equations (III.5) and (III.6)

\[\frac{da}{ds} = 0, \quad \forall s \in I\]

and so

\[a (s) = \text{constant}.\]

(Sufficiency): Suppose that \(a (s) = \text{constant}, \forall s \in I.\) Then \(\frac{da}{ds} = 0\)

and according to (III.2)

\[< \frac{da}{ds}, X (s) - a (s) > = - r (s) \frac{dr}{ds} = 0\]

or

\[r (s) \frac{dr}{ds} (s) = 0.\]

In the last equation if \(r (s) = 0\) then from Corollary III of Theorem II.1 we have

\[\sum_{i=2}^{n} m_i = 0\]

which gives us \(m_i = 0, \quad 2 \leq i \leq n.\)

On the other hand

\[m_2 = - 1/k_1.\]

Since \(k_i = \| X'' (s) \| / \| X' (s) \| [2]\) the case \(m_2 = 0\) implies that \(\| X' (s) \| = 0\) or \(\| X'' (s) \| \to \infty.\) In the case \(\| X' (s) \| = 0\)
the curve is not regular. Then we must have $\|X'(s)\| \neq 0$ and in E^n $\|X''(s)\|$ can not be infinitive. Therefore we must have

$$\frac{dr}{ds}(s) = 0$$

and so $r(s) = \text{constant}$.

A characterization of a curve in E^n to be an $(n-1)$-sphere can be given by the following theorem.

Theorem III.4: Let $X: I \rightarrow E^n$ be a regular curve such that $k_{n-1} \neq 0$, $\forall s \in I$ and $m_n(s) \neq 0$. The curve X lies on a $(n-1)$-sphere \Leftrightarrow The centers of $(n-1)$-osculating spheres of the curve X are all the same point.

Proof: (Necessity): Suppose that X lies on S_b^{n-1}. Then according to Corollary I of Theorem III.2, for $\forall s \in I$ at the points $X(s)$ of X, $(n-1)$-osculating sphere is S_b^{n-1} whose center is a fixed point.

(Sufficiency): Suppose that, at the point $X(s)$, the center of $(n-1)$-osculating sphere of X is a fixed point b. Then Theorem III.3 says that, at every point $X(s)$ of X, the radii of $(n-1)$-osculating spheres are also equal. Hence for $\forall s \in I$ at every point $X(s)$,

$$d(X(s), b) = r = \text{constant}$$

which means that X is a spherical curve. For $\forall s \in I$ the curvature $k_{n-1} \neq 0$ implies that this sphere is S_b^{n-1}.

Another characterization of a curve in E^n to be on a $(n-1)$-sphere can be given in terms of its curvatures by the following theorem.

Theorem III.5: Let $X: I \rightarrow E^n$ be a regular curve such that for $\forall s \in I$, $k_{n-1} \neq 0$, $m_n \neq 0$, $m_1 = 0$, $m_2 = -1/k_1$ and for $2 < i \leq n$,

$$m_i = \left(m'_{i-1} + m_{i-1}k_{i-2} \right) \frac{1}{k_{i-1}}.$$

The curve X lies on a sphere $S^{n-1} \Leftrightarrow m'_n + m_{n-1}k_{n-1} = 0$.

Proof: (Necessity): According to Corollary II of Theorem II.1 the center of \((n-1)\)-osculating sphere at \(X(s)\) is

\[
(III.7) \quad a(s) = X(s) - \sum_{j=2}^{n} m_j V_j.
\]

On the other hand according to Theorem III.4 it is necessary that \(a(s)\) is a fixed point for the curve \(X\) to lie on a \((n-1)\)-sphere. This implies that

\[\frac{da}{ds} = 0.\]

Hence from Equation (III.7), by differentiation with respect to \(s\), we have

\[
(III.8) \quad \frac{da}{ds} = (m'_n + m_{n-1} k_{n-1}) V_n = 0
\]

which completes the necessity of the theorem.

(Sufficiency): Suppose that for a curve \(X\) we have

\[m'_n + m_{n-1} k_{n-1} = 0.\]

Replacing this in (III.8) we obtain

\[\frac{da}{ds} = 0\]

which implies that

\[a(s) = \text{constant}.\]

Thus jointing this result with Theorem III.4 we see that \(X\) is a spherical curve and for \(\forall s \in \mathbb{I}\), since \(k_{n-1} \neq 0\) this lies on a \((n-1)\)-sphere of \(E^n\). \(\blacksquare\)

IV. Special Cases.

1. The Case \(n=3\).

In the case that \(n=3\) the formulae in Theorem III.5 reduces to

\[
(IV.1) \quad m'_3 + k_2 m_2 = 0,
\]

where replacing \(m_3 = m'_2 / k_2\) we have

\[\frac{(m'_2 / k_2)'}{k_2} + m_2 k_2 = 0.\]

Since \(m_2 = -1 / k_1\) the last equation gives us
(IV.2) \[\frac{1}{k_1} k_2 + \left[\left(\frac{1}{k_1} \right)' \frac{1}{k_2} \right]' = 0, \]

where replacing
\[\frac{1}{k_1} = \theta, \quad \frac{1}{k_2} = \sigma \text{ and } k_2 = \tau \]
we obtain
(IV.3) \[\theta \tau' + (\theta' \sigma)' = 0 \]

which is well-known, in the books on elementary differential geometry, characterization for spherical curves.

On the other hand in the case \(n = 3 \) the function \(f \) in [4] can be taken as \(f = -m_3 \). Similarly, taking \(n = 3 \) in Corollary III of Theorem III.1, the radius of the sphere can be obtained as

\[r = (m_2^2 + m_3^2)^{1/2} \]
or
\[r = \left[\left(\frac{1}{k_1} \right)^2 + f_2 \right]^{1/2} \]

which is the same value in [4]. Hence, for \(n = 3 \), Theorem I.1 in [4], can be obtained as another special case from Theorem III.5. Since \(f = -m_3 \) are, respectively,

\[m_3 k_2 = m_2', \quad m_3' + k_2 m_2 = 0 \]

which can be obtained from Theorem III.5, for \(n = 3 \).

On the other hand since Theorem 1.2 in [4] is deduced from (IV.2) we can say that it is also another special case of the Theorem III.5.
REFERENCES

Özet:

\mathbb{R}^n n-boyutlu Öklid uzayında S^{n-1} (n−1)-küre üzerindeki regüler eğriler için karakterizasyonlar verdik ve bu karakterizasyonları, ele alınan eğrilerin yüksek dereceden eğrilikleri cinsinden ifade ettim.
Prix de l'abonnement annuel

Turquie: 15 TL; Étranger: 30 TL.
Prix de ce numéro: 5 TL (pour la vente en Turquie).
Prière de s'adresser pour l'abonnement à: Fen Fakültesi
Dekanlığı Ankara, Turquie.