ON COFINITELY WEAK RAD-SUPPLEMENTED MODULES

FIGEN ERYILMAZ AND ŞENOL EREN

Abstract. In this paper, necessary and sufficient conditions for a quotient module are found to be a cofinitely weak Rad-supplemented module under which circumstances. Nevertheless, some relations are investigated between cofinitely Rad-supplemented modules and cofinitely weak Rad-supplemented modules. Lastly, we show that an arbitrary ring R is a left Noetherian V–ring if and only if every weak Rad-supplemented R–module is injective.

1. Introduction

Throughout the paper, R will be an associative ring with identity, M will be an R–module and all modules will be unital left R–modules unless otherwise specified. By $N \leq M$, we mean that N is a submodule of M. Recall that a submodule L of M is small in M and denoted by $L \ll M$, if $M \neq L + K$ for every proper submodule K of M. A submodule S of M is said to be essential in M and denoted by $S \trianglelefteq M$, if $S \cap N \neq 0$ for every nonzero submodule $N \leq M$. We write $\text{Rad}(M)$ for the Jacobson radical of a module M. An R–module M is called supplemented, if every submodule N of M has a supplement in M, i.e. a submodule K is minimal with respect to $M = N + K$. K is supplement of N in M if and only if $M = N + K$ and $N \cap K \ll K$ [16].

If $M = N + K$ and $N \cap K \ll M$, then K and N are called weak supplements of each other. Also M is called a weakly supplemented module if every submodule of M has a weak supplement in M [13, 18]. By using this definition, Büyükaşk and Lomp showed in [6] that a ring R is left perfect if and only if every left R–module is weakly supplemented if and only if R is semilocal and the radical of the countably infinite free left R–module has a weak supplement. Furthermore Alizade and Büyükaşk showed that a ring R is semilocal if and only if every direct product of simple modules is weakly supplemented [3].

In [17], Xue introduced Rad-supplemented modules. Let M be an R– module, N and K be any submodules of M with $M = N + K$. If $N \cap K \leq \text{Rad}(K)$...
(N \cap K \leq \text{Rad}(M))$, then K is called a (weak) Rad-supplement of N in M. Besides M is called (weakly) Rad-supplemented module provided that each submodule has a (weak) Rad-supplement in M. For characterizations of Rad-supplemented and weak Rad-supplemented modules, we refer to [15] and [17]. Since the Jacobson radical of a module is the sum of all small submodules, every supplement is a Rad-supplement.

Certain modules whose maximal submodules have supplements are studied in [1]. Also in the same paper, cofinitely supplemented modules are introduced. A submodule N of M is said to be cofinite if $\frac{M}{N}$ is finitely generated. M is called cofinitely (weak) supplemented if every cofinite submodule has a (weak) supplement in M [1, 2]. Nevertheless, it is known by [1, Theorem 2.8] and [2, Theorem 2.11] that an R–module M is cofinitely (weak) supplemented if and only if every maximal submodule of M has a (weak) supplement in M. Clearly, supplemented modules are cofinitely supplemented and weakly supplemented modules are cofinitely weak supplemented ones.

M is called cofinitely Rad-supplemented if every cofinite submodule of M has a Rad-supplement [5]. Since every submodule of a finitely generated module is cofinite, a finitely generated module is Rad-supplemented if and only if it is cofinitely Rad-supplemented. According to [12], if every cofinite submodule of M has a Rad-supplement that is a direct summand of M, then M is called a \oplus–cofinitely Rad-supplemented module.

In a present paper [10], a module is called cofinitely weak Rad-supplemented if every cofinite submodule has a weak Rad-supplement and totally cofinitely weak Rad-supplemented if every submodule is cofinitely weak Rad-supplemented. Also it is proved in [10] that any arbitrary sum of cofinitely weak Rad-supplemented modules is a cofinitely weak Rad-supplemented module. Clearly this implies that any finite direct sum of cofinitely weak Rad-supplemented modules is also cofinitely weak Rad-supplemented. We will show that an infinite direct sum of totally cofinitely weak Rad-supplemented modules is totally cofinitely weak Rad-supplemented under certain conditions. Also we will prove that every torsion module over a Dedekind domain is a cofinitely weak Rad-supplemented module and find some conditions to show when any module over a Dedekind domain is cofinitely weak Rad-supplemented.

2. Main Results

Following [5], a module M is called w–local if it has a unique maximal submodule.

Theorem 1. Every w–local module is cofinitely weak Rad-supplemented.

Proof. Let M be a module and U be a cofinite submodule of M. Since $\frac{M}{U}$ is finitely generated, it has a maximal submodule such as $\frac{P}{\tilde{P}}$. Therefore P is a maximal
submodule of M. Then we have $U + M = M$ and $U \cap M = U \subseteq P = \text{Rad}(M)$. Hence M is cofinitely weak Rad-supplemented.

Recall that a module M is called refinable (or suitable), if for any submodules $U, V \leq M$ with $U + V = M$, there exists a direct summand U_1 of M with $U_1 \leq U$ and $U_1 + V = M$.

Theorem 2. Let M be a refinable R–module. Then the following are equivalent:
(i) M is \oplus–cofinitely Rad-supplemented,
(ii) M is cofinitely Rad-supplemented,
(iii) M is cofinitely weak Rad-supplemented.

Proof. The implications $(i) \Rightarrow (ii) \Rightarrow (iii)$ are obvious.

$(iii) \Rightarrow (i)$ Let M be a cofinitely weak Rad-supplemented module and N be a cofinite submodule of M. Then, we have $M = N + K$ and $N \cap K \leq \text{Rad}(M)$ where K is a submodule of M. Since M is a refinable module, it has a direct summand L such that $L \leq K$ and $M = L + N$. Following this, $N \cap L \leq N \cap K \leq \text{Rad}(M)$ implies that L is weak Rad-supplement of N. By using [14, Proposition 4], we get that L is Rad-supplement of N. Therefore, M is \oplus–cofinitely Rad-supplemented.

A ring R is called a left V–ring if every simple left R–module is injective.

Theorem 3. For an arbitrary ring R, the following are equivalent:
(i) Every weakly Rad-supplemented R–module is injective,
(ii) R is a left Noetherian V–ring.

Proof. $(i) \Rightarrow (ii)$ Assume that M is a \oplus–supplemented R–module. Since M is weak Rad-supplemented, it is an injective module. By Proposition 5.3 in [11] we get that R is a left Noetherian V–ring.

$(ii) \Rightarrow (i)$ Let M be a weakly Rad-supplemented module. Since R is a left Noetherian V–ring, we get $\text{Rad}(M) = 0$ by Villamayor theorem in [7]. Then, M is semisimple and so \oplus–supplemented. Again using Proposition 5.3 in [11], we obtain M is an injective module.

Corollary 1. Let R be a commutative ring. Then, every weakly Rad-supplemented R–module is injective if and only if R is semisimple.

Proof. Suppose that every weakly Rad-supplemented module is injective. By using the preceding theorem, we can say that R is a left Noetherian V–ring. Thus, R is semisimple by Proposition 1 and first corollary of [7]. The other side of the proof is obvious by [16, 20.3].

Theorem 4. Let M be a module and N be a submodule of M. If every cofinite submodule containing N of M has a weak Rad-supplement in M, then $\frac{M}{N}$ is cofinitely weak Rad-supplemented.
Proof. Let $\frac{U}{N}$ be a cofinite submodule of $\frac{M}{N}$. Since $\frac{(U+N)}{N} \cong \frac{M}{U}$, we get that U is a cofinite submodule of M containing N. Hence, we can find a submodule V of M such that $M = U + V$ and $U \cap V \leq \text{Rad}(M)$. By using Proposition 3.2 of [15], we can deduce that $\frac{(V+N)}{N}$ is a weak Rad-supplement of $\frac{U}{N}$ in $\frac{M}{N}$. Therefore, $\frac{M}{N}$ is a cofinitely weak Rad-supplemented module.

Remark. While a quotient module of a module is a cofinitely weak Rad-supplemented module, it may not be a cofinitely weak Rad-supplemented module. For example, \mathbb{Z}/\mathbb{Z} isn’t cofinitely weak Rad-supplemented but \mathbb{Z}_p is cofinitely weak Rad-supplemented for any prime number p.

Proposition 1. Let M be a cofinitely weak Rad-supplemented R–module. Then every Rad-supplement in M is cofinitely weak Rad-supplemented.

Proof. Let V be a Rad–supplement of U in M. That means $M = U + V$ and $U \cap V \leq \text{Rad}(V)$. Since $\frac{M}{V} = \frac{U + V}{V} \cong \frac{V}{\text{Rad}(V)}$, we get that $\frac{V}{\text{Rad}(V)}$ is a cofinitely weak Rad-supplemented module by [10, Proposition 6]. Theorem 4 in the same paper implies that V is cofinitely weak Rad-supplemented.

Theorem 5. Let R be a Dedekind domain and M be a torsion R–module. Then M is cofinitely weak Rad-supplemented.

Proof. By [3, Corollary 2.7], we have $\frac{M}{\text{Rad}(M)}$ is semisimple and so cofinitely weak Rad-supplemented.

Theorem 6. Let R be a Dedekind domain, $\frac{M}{\text{Rad}(M)}$ be finitely generated and $\text{Rad}(M) \leq M$. If $\text{Rad}(M)$ is cofinitely weak Rad-supplemented, then M is cofinitely weak Rad-supplemented.

Proof. Suppose that $\frac{M}{\text{Rad}(M)}$ is generated by $m_1 + \text{Rad}(M), m_2 + \text{Rad}(M), \ldots, m_n + \text{Rad}(M)$. Then, for finitely generated submodule $K = Rm_1 + Rm_2 + \ldots + Rm_n$, we have $M = \text{Rad}(M) + K$ and $K \cap \text{Rad}(M)$ is finitely generated as K is finitely generated. So $K \cap \text{Rad}(M) \ll M$ by Lemma 2.3 in [3]. That is to say, K is a weak supplement of $\text{Rad}(M)$ of M. Since $\text{Rad}(M) \leq M$, we get $\frac{M}{\text{Rad}(M)}$ is torsion. Besides this, Proposition 9.15 of [4] implies that $\text{Rad}\left(\frac{M}{\text{Rad}(M)}\right) = 0$. Hence $\frac{M}{\text{Rad}(M)}$ is semisimple by Corollary 2.7 in [3]. If we consider $0 \to \text{Rad}(M) \to M \to \frac{M}{\text{Rad}(M)} \to 0$, then M is cofinitely weak Rad-supplemented by Theorem 7 in [10].

Proposition 2. Let R be a non-semilocal commutative domain. If M is totally cofinitely weak Rad-supplemented, then M is torsion.

Proof. Suppose that $\text{Ann}(m) = 0_R$ for some $m \in M$. Then we have $Rm \cong R$. Since Rm is cofinitely weak Rad-supplemented, R is also (cofinitely) weak Rad-supplemented. Then by 17.2 of [8], R is a semilocal ring which gives a contradiction. Thus, M is a torsion module.
Theorem 7. Let R be an arbitrary ring and $M = \bigoplus_{i \in I} M_i$ such that M_i is totally cofinitely weak Rad-supplemented for all $i \in I$. If $U = \bigoplus_{i \in I} (U \cap M_i)$ for every submodule U of M, then M is totally cofinitely weak Rad-supplemented.

Proof. Assume that U is a submodule of M and V is a cofinite submodule of U where $U = \bigoplus_{i \in I} (U \cap M_i)$. Since $V = \bigoplus_{i \in I} (V \cap M_i)$ and $\frac{U}{V} \cong \bigoplus_{i \in I} \left(\frac{U}{V} \cap M_i \right)$, we get that $V \cap M_i$ is a cofinite submodule of $U \cap M_i$ for all $i \in I$. We know that $U \cap M_i$ is cofinitely weak Rad-supplemented. Therefore $V \cap M_i$ has a weak Rad-supplement K_i in $U \cap M_i$ for all $i \in I$. Let $K = \bigoplus_{i \in I} K_i$. Then we obtain $U = V + K$ and $V \cap K \leq \text{Rad}(U)$. As a result, U is cofinitely weak Rad-supplemented and so M is totally cofinitely weak Rad-supplemented.

Let R be a Dedekind domain and M be an R–module. By Ω, we denote the set of all maximal ideals of R. The submodule $T_P(M) = \{ m \in M \mid P^n m = 0 \text{ for some } n \geq 1 \}$ is called the P–primary part of M.

Theorem 8. Let R be a non-semilocal Dedekind domain. Then, M is a totally cofinitely weak Rad–supplemented module if and only if M is torsion and $T_P(M)$ is totally cofinitely weak Rad-supplemented for every $P \in \Omega$.

Proof. Assume that M is a totally cofinitely weak Rad-supplemented module. Then M is torsion by Proposition 2. On the other hand $T_P(M)$ is totally cofinitely weak Rad-supplemented for every $P \in \Omega$. Because every submodule of a totally cofinitely weak Rad-supplemented module is a totally cofinitely weak Rad-supplemented module.

Conversely, we can write $M = \bigoplus_{P \in \Omega} T_P(M)$ by Proposition 6.9 in [9]. Let N be a submodule of M. Since M is torsion, N is also a torsion module. By using the same proposition, we can write that $N = \bigoplus_{P \in \Omega} T_P(N)$. Therefore, $\bigoplus_{P \in \Omega} (N \cap T_P(M))$ and $T_P(M)$ is totally cofinitely weak Rad-supplemented for every $P \in \Omega$. As a result, M is totally cofinitely weak Rad-supplemented by the preceding theorem.

Theorem 9. Any torsion module over a Dedekind domain is totally cofinitely weak Rad–supplemented.

Proof. Let R be a Dedekind domain, M be a torsion R–module and N be a submodule of M. Due to Corollary 2.7 of [3], $\frac{N}{\text{Rad}(N)}$ is semisimple and so it is cofinitely weak Rad–supplemented. Therefore N is cofinitely weak Rad–supplemented by Theorem 4 of [10].

References

Current address: Figen ERYILMAZ: Ondokuz Mayıs University, Faculty of Education, Department of Mathematics Education, 55139 Kurupelit, Samsun-TURKEY.

E-mail address: fyuzbas1@omu.edu.tr

Current address: Şenol EREN: Ondokuz Mayıs University, Faculty of Sciences and Arts, Department of Mathematics, 55139 Kurupelit, Samsun-TURKEY.

E-mail address: seren@omu.edu.tr