VECTOR-VALUED CESÀRO SUMMABLE GENERALIZED LORENTZ SEQUENCE SPACE

OĞUZ OĞUR AND BİRSEN SAĞIR

ABSTRACT. The main purpose of this paper is to introduce Cesàro summable generalized Lorentz sequence space \(C_1[d(v, p)] \). We study some topological properties of this space and obtain some inclusion relations.

1. Introduction

Throughout this work, \(\mathbb{N} \), \(\mathbb{R} \) and \(\mathbb{C} \) denote the set of positive integers, real numbers and complex numbers, respectively. For some properties of sequences, we refer to [4, 8].

For \(1 \leq p < \infty \), the Cesàro sequence space is defined by

\[
C_{\text{es}p} = \left\{ x \in w : \sum_{j=1}^{\infty} \left(\frac{1}{j} \sum_{i=1}^{j} |x(i)| \right)^p < \infty \right\},
\]

equipped with norm

\[
\|x\| = \left(\sum_{j=1}^{\infty} \left(\frac{1}{j} \sum_{i=1}^{j} |x(i)| \right)^p \right)^{\frac{1}{p}}.
\]

This space was first introduced by Shiue [14]. It is very useful in the theory of matrix operators and others. Later, many authors studied this space [see 1, 5, 11, 13].

Let \((E, \|\|) \) be a Banach space. The Lorentz sequence space \(l(p, q, E) \) (or \(l_{p,q}(E) \)) for \(1 \leq p, q \leq \infty \) is the collection of all sequences \(\{a_i\} \in c_0(E) \) such that

\[
\|\{a_i\}\|_{p,q} = \left\{ \begin{array}{ll}
\left(\sum_{i=1}^{\infty} \left(\frac{i^{q/p-1}}{i^{1/p}} \|a_{\phi(i)}\|^q \right)^{1/q} \right) & \text{for } 1 \leq p < \infty, \; 1 \leq q < \infty \\
\sup_i i^{q/p} \|a_{\phi(i)}\| & \text{for } 1 \leq p \leq \infty, \; q = \infty
\end{array} \right.
\]

Received by the editors: March 18, 2016, Accepted: Aug 14, 2016.
2010 Mathematics Subject Classification. 40A05, 40H05, 46A45, 46E30.
Key words and phrases. Lorentz sequence space, Cesàro summable, vector-valued space.
is finite, where \(\{ \| a_{\phi(i)} \| \} \) is non-increasing rearrangement of \(\{ \| a_i \| \} \) (We can interpret that the decreasing rearrangement \(\{ \| a_{\phi(i)} \| \} \) is obtained by rearranging \(\{ \| a_i \| \} \) in decreasing order). This space was introduced by Miyazaki in [9] and examined comprehensively by Kato in [3] (see also [6, 7]).

A weight sequence \(v = \{ v(i) \} \) is a positive decreasing sequence such that \(v(1) = 1, \lim_{i \to \infty} v(i) = 0 \) and \(\lim_{i \to \infty} V(i) = \infty \), where \(V(i) = \sum_{n=1}^{i} v(n) \) for every \(i \in \mathbb{N} \).

Popa [12] defined the generalized Lorentz sequence space \(d(v, p) \) for \(0 < p < \infty \) as follows

\[
d(v, p) = \left\{ x = \{ x_i \} \in w : \| x \|_{v, p} = \sup_{\pi} \left(\sum_{i=1}^{\infty} |x_{\pi(i)}|^p v(i) \right)^{1/p} < \infty \right\},
\]

where \(\pi \) ranges over all permutations of the positive integers and \(v = \{ v(i) \} \) is a weight sequence. It is know that \(d(v, p) \subset c_0 \) and hence for each \(x \in d(v, p) \) there exists a non-increasing rearrangement \(\{ x^* \} = \{ x_i^* \} \) of \(x \) and

\[
\| x \|_{v, p} = \left(\sum_{n=1}^{\infty} |x_i^*|^p v(i) \right)^{\frac{1}{p}}
\]

(see [10, 12]).

Let \((X, \| \cdot \|) \) be a Banach space and \(v = \{ v(k) \} \) be a weight sequence. We introduce the vector-valued Cesáro summable generalized Lorentz sequence space \(C_1 [d(v, p)] \) for \(0 < p < \infty \). The space \(C_1 [d(v, p)] \) is the collection of all \(X \)-valued 0-sequences \(\{ x_n \} \) such that

\[
\left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \| x_{\phi(n)} \| \right]^p v(k) \right)^{\frac{1}{p}}
\]

is finite, where \(\{ \| x_{\phi(n)} \| \} \) is non-increasing rearrangement of \(\{ \| x_n \| \} \).

We shall need the following lemmas.

Lemma 1. (Hardy, Littlewood and Pólya [2]) Let \(\{ a_i \}_{1 \leq i \leq n} \) and \(\{ b_i \}_{1 \leq i \leq n} \) be two sequences of positive numbers. Then we have

\[
\sum_{i} a_i^* \cdot b_i \leq \sum_{i} a_i \cdot b_i \leq \sum_{i} a_i^+ \cdot b_i^+;
\]

where \(\{ a_i^* \} \) is the non-increasing rearrangements of sequence \(\{ a_i \}_{1 \leq i \leq n} \) and \(\{ b_i^+ \} \) and \(\{ b_i \} \) are the non-increasing and non-decreasing rearrangements of sequence \(\{ b_i \}_{1 \leq i \leq n} \), respectively.

Lemma 2. (Kato [3]) Let \(\{ x_i^{(n)} \} \) be an \(X \)-valued double sequence such that \(\lim_{i \to \infty} x_i^{(n)} = 0 \) for each \(\mu \in \mathbb{N} \) and let \(\{ x_i \} \) be an \(X \)-valued sequence such that
lim_{\mu \to \infty} x_i^{(\mu)} = x_i \text{ (uniformly in } i\text{). Then } \lim_{i \to \infty} x_i = 0 \text{ and for each } i \in \mathbb{N}

\|x_\phi(i)\| \leq \lim_{\mu \to \infty} \|x_i^{(\mu)}\|,

where \{\|x_\phi(i)\|\} and \{\|x_\phi^{(\mu)}(i)\|\}_i are the non-increasing rearrangements of \{\|x_i\|\} and \{\|x_i^{(\mu)}\|\}_i, respectively.

2. MAIN RESULTS

Theorem 1. The space $C_1 [d(v,p)]$ for $0 < p < \infty$ is a linear space over the field $K = \mathbb{R}$ or \mathbb{C}.

Proof. Let $x, y \in C_1 [d(v,p)]$. Since v is non-increasing, the non-increasing rearrangements of v is itself. Thus, using the inequality $\sum_i a_i \cdot b_i \leq \sum_i a_i^* \cdot b_i^*$ from Lemma 1, we have

$$\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|x_\phi(n) + y_\psi(n)\| \right]^p v(k) \leq \sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} (\|x_\phi(n)\| + \|y_\psi(n)\|) \right]^p v(k)$$

$$\leq D \sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|x_\phi(n)\| \right]^p v(k) + D \sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|y_\psi(n)\| \right]^p v(k)$$

$$\leq D \sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|x_\phi(n)\| \right]^p v(k) + D \sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|y_\psi(n)\| \right]^p v(k)$$

$$< \infty,$$

where $D = \max \{1, 2^{p-1}\}$. Here \{\|x_\phi(n)\|\}, \{\|y_\psi(n)\|\} and \{\|x_\phi(n) + y_\psi(n)\|\} denote the non-increasing rearrangements of the sequences \{\|x_i\|\}, \{\|y_i\|\} and \{\|x_i + y_i\|\}, respectively. Let $\alpha \in K$. Hence we get

$$\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|\alpha x_\phi(n)\| \right]^p v(k) = \sum_{k=1}^{\infty} \left[\frac{|\alpha|}{k} \sum_{n=1}^{k} \|x_\phi(n)\| \right]^p v(k)$$

$$= |\alpha|^p \sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|x_\phi(n)\| \right]^p v(k)$$

$$< \infty.$$
This shows that $x + y \in C_1[\{d(v, p)\} \cup \alpha x \in C_1[\{d(v, p)\}]$ and so $C_1[\{d(v, p)\}]$ is a linear space.

Theorem 2. The space $C_1[\{d(v, p)\}]$ for $1 \leq p < \infty$ is normed space with the norm

$$\|x\|_{C,v,p} = \left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|x_{\phi(n)}\| \right]^p \right)^{\frac{1}{p}},$$

where $\{\|x_{\phi(n)}\|\}$ denotes the non-increasing rearrangements of $\{\|x_n\|\}$.

Proof. It is clear that $\|0\|_{C,v,p} = 0$. Let $\|x\|_{C,v,p} = 0$. Then we have $\frac{1}{k} \sum_{n=1}^{k} \|x_{\phi(n)}\| = 0$ for all $k \in \mathbb{N}$. Hence we get $\|x_{\phi(n)}\| = 0$ for all $n \in \mathbb{N}$ and so $x = 0$.

Let $x, y \in C_1[\{d(v, p)\}]$. Since weight sequence v is decreasing, the non-increasing rearrangements of v is itself. Thus, using the inequality $\sum_i a_i \cdot b_i \leq \sum_i a_i^* \cdot b_i^*$ from Lemma 1, we have

$$\|x + y\|_{C,v,p} = \left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|x_{\psi(n)} + y_{\psi(n)}\| \right]^p \right)^{\frac{1}{p}} \leq \left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|x_{\psi(n)}\| \right]^p \right)^{\frac{1}{p}} + \left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|y_{\psi(n)}\| \right]^p \right)^{\frac{1}{p}} \leq \|x\|_{C,v,p} + \|y\|_{C,v,p},$$

where $\{\|x_{\phi(n)}\|\}, \{\|y_{\phi(n)}\|\}$ and $\{\|x_{\psi(n)} + y_{\psi(n)}\|\}$ denote the non-increasing rearrangements of $\{\|x_n\|\}, \{\|y_n\|\}$ and $\{\|x_n + y_n\|\}$, respectively.

Let λ be an element of K and let x be a vector in $C_1[\{d(v, p)\}]$. Hence we have

$$\|\lambda x\|_{C,v,p} = \left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|\lambda x_{\phi(n)}\| \right]^p \right)^{\frac{1}{p}} = |\lambda| \left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \|x_{\phi(n)}\| \right]^p \right)^{\frac{1}{p}} = |\lambda| \|x\|_{C,v,p}.$$

Theorem 3. The space $C_1[\{d(v, p)\}]$ for $1 \leq p < \infty$ is complete with respect to its norm.
Proof. Let \(\{x^{(s)}\} \) be an arbitrary Cauchy sequence in \(C_1 [d(v,p)] \) with \(x^{(s)} = \{x^{(s)}_n\}_{n=1}^{\infty} \) for all \(s \in \mathbb{N} \). Then we have

\[
\lim_{s,t \to \infty} \left\| x^{(s)} - x^{(t)} \right\|_{C_1 [d(v,p)]} = \lim_{s,t \to \infty} \left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \left\| x^{(s)}_{\pi_{s,t}(n)} - x^{(t)}_{\pi_{s,t}(n)} \right\|_v \right]^p \right)^{\frac{1}{p}} = 0,
\]

where \(\{ \left\| x^{(s)}_{\pi_{s,t}(n)} - x^{(t)}_{\pi_{s,t}(n)} \right\|_v \} \) denotes the non-increasing rearrangement of \(\left\{ \left\| x^{(s)} - x^{(t)} \right\|_v \right\} \). Hence we obtain \(\lim_{s,t \to \infty} \left\| x^{(s)}_{\pi_{s,t}(n)} - x^{(t)}_{\pi_{s,t}(n)} \right\|_v = 0 \) for each \(n \in \mathbb{N} \)
and so \(\{x^{(s)}_n\} \), for a fixed \(n \in \mathbb{N} \), is a Cauchy sequence in \(X \).

Then, there exists \(x_n \in X \) such that \(x^{(s)}_n \to x_n \) as \(s \to \infty \). Let \(x = \{x_n\} \).
Since \(\lim_{n \to \infty} x^{(s)}_n = 0 \) for each \(s \in \mathbb{N} \), by Lemma 2 we have \(\lim_{n \to \infty} x_n = 0 \).
Therefore we can choose the non-increasing rearrangement \(\left\{ \left\| x^{(s)}_{\pi_{s,t}(n)} - x^{(t)}_{\pi_{s,t}(n)} \right\|_v \right\}_{n} \)
of \(\left\{ \left\| x_n - x^{(t)}_n \right\|_v \right\} \). Also, for an arbitrary \(\varepsilon > 0 \) there exists \(N \in \mathbb{N} \) such that

\[
\left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \left\| x^{(s)}_{\pi_{s,t}(n)} - x^{(t)}_{\pi_{s,t}(n)} \right\|_v \right]^p \right)^{\frac{1}{p}} < \varepsilon
\]

for \(s, t > N \). Let \(t \) be an arbitrary positive integer with \(t > N \) and fixed. If we put

\[
y^{(s)}_n = x^{(s)}_n - x^{(t)}_n \quad \text{and} \quad y_n = x_n - x^{(t)}_n,
\]
then we have

\[
\lim_{n \to \infty} \ y^{(s)}_n = 0 \quad \text{for each} \ s \in \mathbb{N} \quad \text{and} \quad \lim_{n \to \infty} \ y^{(s)}_n = y_n \quad \text{(uniformly in} \ n).\]

Thus by Lemma 2 we get

\[
\left\| y^{(s)}_n \right\|_v \leq \lim_{n \to \infty} \left\| y^{(s)}_{\pi_{s,t}(n)} \right\|_v
\]
for each \(n \in \mathbb{N} \), that is,

\[
\left\| x^{(s)}_{\pi_{s,t}(n)} - x^{(t)}_{\pi_{s,t}(n)} \right\|_v \leq \lim_{n \to \infty} \left\| x^{(s)}_{\pi_{s,t}(n)} - x^{(t)}_{\pi_{s,t}(n)} \right\|.
\]
for each \(n \in \mathbb{N} \). Hence, by (2), (3) we get

\[
\left\| x - x^{(t)} \right\|_{C,v,p} = \left(\sum_{k=1}^{\infty} \frac{1}{k} \sum_{n=1}^{k} \left\| x_{\pi_t(n)} - x^{(t)}_{\pi_t(n)} \right\|^p v(k) \right)^{1/p} \\
\leq \left(\sum_{k=1}^{\infty} \frac{1}{k} \sum_{n=1}^{k} \lim_{s \to 1} \left\| x^{(s)}_{\pi_s,t(n)} - x^{(t)}_{\pi_s,t(n)} \right\|^p v(k) \right)^{1/p} \\
= \lim_{s \to 1} \left(\sum_{k=1}^{\infty} \frac{1}{k} \sum_{n=1}^{k} \left\| x^{(s)}_{\pi_s,t(n)} - x^{(t)}_{\pi_s,t(n)} \right\|^p v(k) \right)^{1/p} \\
< \varepsilon.
\]

Also, since \(C_1 [d(v,p)] \) is a linear space we have \(\{ x_n \} = \{ x_n - x^{(N)}_n \} \in C_1 [d(v,p)] \). Hence the space \(C_1 [d(v,p)] \) is complete with respect to its norm.

Theorem 4. Let \(1 < p < \infty \). Then, the inclusion \(d(v,p) \subset C_1 [d(v,p)] \) holds.

Proof. Let \(x \in d(v,p) \). Then there exists \(T > 0 \) such that

\[
\lim_{m \to \infty} \left(\sum_{n=1}^{m} \left\| x_{\phi(n)} \right\|^p v(n) \right)^{1/p} = \left(\sum_{n=1}^{\infty} \left\| x_{\phi(n)} \right\|^p v(n) \right)^{1/p} < T < \infty,
\]

where \(\{ \left\| x_{\phi(n)} \right\| \} \) denotes the non-increasing rearrangements of \(\{ \left\| x_n \right\| \} \). Since \(\sum_{k=1}^{\infty} \frac{1}{k^p} < \infty \) for \(1 < p < \infty \) and \(v \) is decreasing, we get

\[
\sum_{k=1}^{\infty} \frac{1}{k^p} \sum_{n=1}^{k} \left\| x_{\phi(n)} \right\|^p v(k) = \sum_{k=1}^{\infty} \frac{1}{k^p} \left(\sum_{n=1}^{k} \left\| x_{\phi(n)} \right\|^p v(n) \right) \leq \max \{ 1, 2^{p-1} \} \sum_{k=1}^{\infty} \frac{1}{k^p} \left(\sum_{n=1}^{k} \left\| x_{\phi(n)} \right\|^p v(n) \right) < \infty.
\]

This completes the proof.

Theorem 5. If \(1 \leq p < q < \infty \), then \(C_1 [d(v,p)] \subset C_1 [d(v,q)] \).
Proof. Let \(x \in C_1 [d(v, p)] \) and let \(\{ \| x_{\phi(n)} \| \} \) denotes the non-increasing rearrangement of \(\{ \| x_n \| \} \). Since \(v(k) \) is decreasing we have
\[
\left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \| x_{\phi(n)} \| \right]^p v(k) \right)^{\frac{1}{p}} \geq \left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{m} \| x_{\phi(n)} \| \right]^p v(k) \right)^{\frac{1}{p}}
\]
\[
\geq \left(\sum_{k=1}^{m} \| x_{\phi(n)} \| \right)^{\frac{1}{p}} v(k)
\]
for every \(m \in \mathbb{N} \). Hence we get
\[
\| x_{\phi(m)} \| \leq (v(m))^{-\frac{1}{p}} m^{-\frac{1}{q}} \left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \| x_{\phi(n)} \| \right]^p v(k) \right)^{\frac{1}{p}}
\]
for every \(m \in \mathbb{N} \). Thus
\[
\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \| x_{\phi(n)} \| \right]^q v(k) = \sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \| x_{\phi(n)} \| \right]^{q-p} \left[\frac{1}{k} \sum_{n=1}^{k} \| x_{\phi(n)} \| \right]^p v(k)
\]
\[
\leq \sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} (v(n))^{-\frac{1}{p}} \| x \|_{C_v, p} \right] \left[\frac{1}{k} \sum_{n=1}^{k} \| x_{\phi(n)} \| \right]^{p} v(k)
\]
\[
\leq \left((v(n))^{-\frac{1}{p}} \| x \|_{C_v, p} \right) ^{q-p} \sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \| x_{\phi(n)} \| \right]^{p} v(k)
\]
\[
< \infty.
\]
This implies that \(x \in C_1 [d(v, q)] \). \(\square \)

Comment. If we put \(\Delta^m x \) instead of \(x \), where \(m \in \mathbb{N} \) and \(\Delta^0 x_k = \{ x_k \} \), \(\Delta x_k = x_k - x_{k+1} \), \(\Delta^m x_k = \Delta^{m-1} x_k - \Delta^{m-1} x_{k+1} = \sum_{v=1}^{m} (-1)^v \binom{m}{v} x_{k+v} \) for all \(k \in \mathbb{N} \) in the definition of \(C_1 [d(v, p)] \), we obtain Cesàro summable generalized Lorentz difference sequence space \(C_1 [d(v, \Delta^m, p)] \) of order \(m \). It can be shown that the sequence space \(C_1 [d(v, \Delta^m, p)] \) is a Banach space with norm
\[
\| x \|_{C_v, \Delta^m, p} = \sum_{k=1}^{m} \| x_{\phi(k)} \| + \left(\sum_{k=1}^{\infty} \left[\frac{1}{k} \sum_{n=1}^{k} \| \Delta^m x_{\phi(n)} \| \right]^{p} v(k) \right)^{\frac{1}{p}},
\]
where \(\{ \| \Delta^m x_{\phi(n)} \| \} \) denotes the non-increasing rearrangements of \(\{ \| \Delta^m x_n \| \} \), and properties in this work.
References

Current address: O. Oğur: Giresun University, Art and Science Faculty, Department of Mathematics, Güre, Giresun, TURKEY
E-mail address: oguz.ogur@giresun.edu.tr

Current address: B. Sağır: Ondokuz Mayıs University, Art and Science Faculty, Department of Mathematics, Kurupelit campus, Samsun, TURKEY
E-mail address: bduyar@omu.edu.tr