STRONGLY \ast-CLEAN PROPERTIES AND RINGS OF FUNCTIONS

HUANYIN CHEN AND ABDULLAH HARMANCI

Abstract. A \ast-ring R is called a strongly \ast-clean ring if every element of R is the sum of a unit and a projection that commute with each other. In this paper, we explore strong \ast-cleanness of rings of continuous functions over spectrum spaces. We prove that a \ast-ring R is strongly \ast-clean if and only if R is an abelian exchange ring and $C(X)\left(C^*(X)\right)$ is \ast-clean, if and only if R is an abelian exchange ring and the classical ring of quotients $q(C(X))$ of $C(X)$ is \ast-clean, where X is a spectrum space of R.

1. Introduction

Let R be an associative ring with unity. A ring R is called clean if every element of a ring R is the sum of an idempotent and a unit in R. If, in addition, these elements are commute, then the ring is called strongly clean. Cleanness of a ring is widely worked since 1977 in many aspects. In 2002, Azarpanah [1], and in 2003, McGovern [11] consider this notion in topological aspects. Let $C(X)$ denote the ring of real valued continuous functions over a topological space X. Azarpanah and McGovern independently prove that if X is a completely regular Hausdorff space, then $C(X)$ is clean if and only if X is strongly zero dimensional, if and only if $C^*(X)$ is clean where $C^*(X)$ is the subring of $C(X)$ consisting of all bounded functions in $C(X)$ [1]. On the other hand, in the first section of [12], commutative clean rings are studied by using all maximal ideals and all prime ideals of the ring.

An involution of a ring R is an operation $\ast : R \to R$ such that $(x+y)^\ast = x^\ast + y^\ast$, $(xy)^\ast = y^\ast x^\ast$ and $(x^\ast)^\ast = x$ for all $x, y \in R$. A ring R with involution \ast is called a \ast-ring, which has its roots in rings of operators, that is, \ast-algebras of operators on a Hilbert space. An element p in a \ast-ring R is called a projection if $p^2 = p = p^\ast$. Recently Vas [14] consider cleanness for any \ast-ring. A \ast-ring R is called \ast-clean if each of its elements is the sum of a unit and a projection, and R a strongly \ast-clean if each of its elements is the sum of a unit and a projection that commute with each.
other. Also Li and Zhou [8] deal with these notions and answer some questions in [14].

In this paper, we are concerned with the topological properties of strongly $*$-clean rings. Let $Max(R)$ and $Spec(R)$ be the sets of all maximal ideals and all prime ideals of the ring R, respectively. Let $J\text{-spec}(R) = \{P \in Spec(R) \mid J(R) \subseteq P\}$. These sets form topological spaces under Zariski topology. We call such topological spaces the spectrum space of R. For a $*$-ring R, we endow the ring $C(X)$ of continuous functions on X with involution $*$, where X is a spectrum space of R. By the help of this, the relationship between strongly $*$-clean rings and the corresponding rings of continuous functions are developed. We then look at the special case of rings of bounded functions. We shall prove that a $*$-ring R is strongly $*$-clean if and only if R is an abelian exchange ring and $C(X)(C^*(X))$ is $*$-clean, where X is a spectrum space of R. Along the way, we provide topological characterization of a strongly $*$-clean ring in terms of the classical ring of quotients over its spectrum spaces.

Throughout this paper all rings are associative with unity. We write $J(R)$, $P(R)$ and $U(R)$ for the Jacobson radical, the prime radical and the set of all invertible elements of a ring R, respectively. Let $C(X)$ denote the ring of real valued continuous functions over a topological space X. Let S and T be two sets. We use $S \cup T$ to denote the set $S \cup T$ with $S \cap T = \emptyset$

2. $*$-Spaces of Prime Ideals

As is well known, $Spec(R)$ is a topological space with Zariski topology. Let I be an ideal of R, and let $E_S(I) = \{P \in Spec(R) \mid I \nsubseteq P\}$. Set $V_S(I) = Spec(R) - E_S(I)$, and $V_S(a) := V_S(RaR)$ for any $a \in R$. Then $V_S(I)$ is a closed set of $Spec(R)$. We say that X is a $*$-space provided that $C(X)$ is a $*$-ring.

Lemma 1. Let R be a $*$-ring. Then $Spec(R)$ is a $*$-space.

Proof. Let P be a prime ideal of R. Set $P^* = \{a \in R \mid a^* \in P\}$. It is easy to check that P^* is an ideal of R. If $aRb \in P^*$, then $b^*Ra^* \subseteq P$. As P is prime, we see that $b^* \in P$ or $a^* \in P$. Thus, $a \in P^*$ or $b \in P^*$. This implies that P^* is a prime ideal of R. Construct a map $*: C(Spec(R)) \to C(Spec(R))$ given by $f \mapsto f^*$, where $f^*(P) = f(P^*)$ for any $P \in Spec(R)$. Clearly, f^* is continuous for any $f \in C(X)$, thus this map is well defined. It is easy to verify that $*$ is a ring morphism. If $f^* = 0$, then for any $P \in Spec(R)$, $f^*(P^*) = 0$, and so $f(P) = 0$. Thus, $f = 0$. That is, $*$ is injective. For any $g \in C(Spec(R))$, we see that $f^* = g$ where $f = g^*$. Therefore $*$ is an involution as $C(Spec(R))$ is commutative. \qed

A ring R is called abelian if every idempotent in R is central. A ring R is an exchange ring provided that for any $a \in R$, there exists an idempotent $e \in aR$ such that $1 - e \in (1-a)R$. For general theory of exchange rings, we refer the reader to [13].
Lemma 2. Let R be a $*$-ring, let $a \in R$, and let $e \in R$ be a projection. If R is an abelian exchange ring, then the following are equivalent:

1. $a - e \in U(R)$, i.e. a is $*$-clean.
2. $V_S(a - 1) \subseteq V_S(e) \subseteq \text{Spec}(R) - V_S(a)$.

Proof. (1) \Rightarrow (2) Set $u := a - e \in U(R)$. Then $1 - a = 1 - e - u$. For any $P \in V_S(a - 1)$, we have $P \not\subseteq V_S(1 - e)$; otherwise, $u = (1 - e) + (a - 1) \in P$. As R is abelian, $\text{Spec}(R) = V_S(e) \cup V_S(1 - e)$, and so $P \not\subseteq V_S(e)$. Thus, $V_S(a - 1) \subseteq V_S(e)$. If $P \in \text{Spec}(R)$ and $P \not\subseteq \text{Spec}(R) - V_S(a)$, then $P \not\subseteq V_S(a)$. This implies that $P \not\subseteq V_S(e)$; otherwise, $u = a - e \in P$. As a result, $V_S(a - 1) \subseteq V_S(e) \subseteq \text{Spec}(R) - V_S(a)$.

(2) \Rightarrow (1) Assume that $V_S(a - 1) \subseteq V_S(e) \subseteq \text{Spec}(R) - V_S(a)$. Let $u = a - e$. Assume that $RuR \neq R$. Then there exists a maximal ideal M of R such that $RuR \subseteq M \subseteq R$. Clearly, $e \in M$ or $1 - e \in M$. Thus, $M \in V_S(e)$ or $M \in V_S(1 - e)$. If $M \in V_S(e)$, then $a = e + u \in M$, whence, $M \in V_S(a)$. This gives a contradiction. If $M \in V_S(1 - e)$, then $a - 1 = (e - 1) + u \in M$, whence, $M \in V_S(a - 1)$. This implies that $M \in V_S(e)$, a contradiction. Thus $RuR = R$. Since R is an exchange ring, analogously to [3, Proposition 17.1.9] that there exists an idempotent $f \in R$ such that $RfR = R$, where $f \in uR$. Since R is abelian, we derive $f = 1$, and so $u \in U(R)$. Therefore $a - e \in R$ is invertible, hence the result holds.

Let X be a topological space. As is well known, a subset U of X is a clopen subset of X if and only if there exists an idempotent $e \in C(X)$ such that $e(x) = 1$ for any $x \in U$ and $e(x) = 0$ for any $x \in X - U$. We say that a subset U of a $*$-space X is $*$-clopen provided that there exists a projection $e \in C(X)$ such that $e(x) = 1$ for any $x \in U$ and $e(x) = 0$ for any $x \in X - U$. A $*$-space X is strongly $*$-zero-dimensional provided that for any disjoint closed subsets A and B there exists a $*$-clopen subset U of X such that $A \subseteq U$ and $B \subseteq X - U$.

Theorem 1. Let R be a $*$-ring. Then R is strongly $*$-clean if and only if

1. R is an abelian exchange ring;
2. $\text{Spec}(R)$ is strongly $*$-zero-dimensional.

Proof. Assume that R is strongly $*$-clean. In view of [8, Lemma 2.1], R is an abelian exchange ring. Let A and B be disjoint closed sets of $\text{Spec}(R)$. Then $A \cap B = \emptyset$. Clearly, there exist two ideals I and J such that $A = V_S(I)$ and $B = V_S(J)$; hence, $V_S(I) \cap V_S(J) = \emptyset$. If $I + J \neq R$, then there exists a maximal ideal P of R such that $I + J \subseteq P \subseteq R$. Hence, $P \subseteq V_S(I + J) = V_S(I) \cap V_S(J)$, a contradiction. This implies that $I + J = R$. Write $a + b = 1$ where $a \in I$ and $b \in J$. By hypothesis, there exists a projection $e \in R$ such that $V_S(a - 1) \subseteq V_S(1 - e) \subseteq \text{Spec}(R) - V_S(a)$.

It is easy to check that

$B = V_S(J) \subseteq V_S(b)$
$= V_S(a - 1) \subseteq V_S(1 - e) \subseteq \text{Spec}(R) - V_S(a)$
$\subseteq \text{Spec}(R) - V_S(I) = \text{Spec}(R) - A$.

Clearly, $B \subseteq V_S(1 - e)$. As $V_S(1 - e) \subseteq \text{Spec}(R) - A$, we see that $A \subseteq V_S(e)$. Obviously, $\text{Spec}(R) = V_S(e) \uplus V_S(1 - e)$. Define $f : \text{Spec}(R) \to \mathbb{R}$ given by $f(P) = 1$ for any $P \in V_S(e)$ and $f(P) = 0$ for any $P \in V_S(1 - e)$. Then $f \in C(\text{Spec}(R))$.

Clearly, $f^2 = f$. For any $P \in V_S(e)$, we have $e \in P$, and so $e \in P^*$. This implies that $P^* \subseteq V_S(e)$. Thus, $f^*(P) = f(P^*) = f(P) = 1$. Likewise, $f^*(P) = f(P) = 0$ for any $P \in V_S(1 - e)$. Therefore $f = f^*$. This shows that $V_S(e)$ is a $*$-clopen set. Therefore $\text{Spec}(R)$ is strongly $*$-zero-dimensional.

Conversely assume that (1) and (2) hold. For any $a \in R$, we see that $V_S(a) \cap V_S(1 - a) = \emptyset$, and so there exists a $*$-clopen U such that $V_S(a - 1) \subseteq U \subseteq \text{Spec}(R) - V_S(a)$. Thus, we have a projection $f \in C(\text{Spec}(R))$ such that $f(P) = 1$ for any $P \in U$ and $f(P) = 0$ for any $P \in \text{Spec}(R) - U$. As U is clopen and the prime radical $P(R)$ is nil, analogously to [3, Lemma 17.1.10], we can find an idempotent $e \in R$ such that $U = V_S(e)$.

Now we claim that e is a projection. For any $P \in V_S(e)$, we see that $f(P) = 1$, and so $f^*(P) = f(P^*) = f(P) = 1$. This implies that $P^* \subseteq U = V_S(e)$, and so $e \in P^*$. Hence, $e^* \in P$, and then $P \subseteq V_S(e^*)$. As a result, $V_S(e) \subseteq V_S(e^*)$. For any $P \in V_S(1 - e)$, we see that $f(P) = 0$, and so $f(P^*) = f^*(P) = f(P) = 0$, and so $P^* \subseteq V_S(1 - e)$. This implies that $1 - e \in P^*$, and so $1 - e^* \in P$. Hence, $P \subseteq V_S(1 - e^*)$. This shows that $V_S(1 - e) \subseteq V_S(1 - e^*)$. As $\text{Spec}(R) = V_S(e) \uplus V_S(1 - e) = V_S(e^*) \uplus V_S(1 - e^*)$, we get $V_S(e) = V_S(e^*)$ and $V_S(1 - e) = V_S(1 - e^*)$. For any $P \in \text{Spec}(R)$, if $P \in V_S(e)$, then $P \subseteq V_S(e^*)$, and so $e, e^* \in P$. Thus, $e - e^* \in P$. If $P \in V_S(1 - e)$, then $P \subseteq V_S(1 - e^*)$, and so $1 - e, 1 - e^* \in P$. This implies that $e - e^* = (1 - e^*) - (1 - e) \in P$. Therefore $e - e^* \in P(R)$. As $P(R)$ is nil, we see that $(e - e^*)^n = 0$ for some $n \in \mathbb{N}$. As $e - e^* = (e - e^*)^3$, we see that $e = e^*$. That is, $e \in R$ is a projection. In view of Lemma 2, we complete the proof.

Recall that two subsets A and B of X is said to be completely separated if there exists $f \in C(X)$ such that $0 \leq f \leq 1$, $f(x) = 0$ for all $x \in A$ and $f(x) = 1$ for all $x \in B$. Let X be a topological space, and let A be a subset of X. Then A is a zero set in X provided that there exists an element $f \in C(X)$ such that $A = \{ x \in X \mid f(x) = 0, \}$, and denote A by $Z(f)$. Every zero set is a closed set, but the converse does not always hold.

Lemma 3. Let X be a $*$-space. Then X is strongly $*$-zero-dimensional if and only if

1. $C(X)$ is $*$-clean;
2. Any two disjoint closed sets of X are completely separated.

Proof. Suppose that X is strongly $*$-zero-dimensional. Then any disjoint closed sets of X are completely separated. Let $f \in C(X)$. Let $A = f^{-1}(0)$ and $B = f^{-1}(1)$. Since every zero set of X is closed, we see that A and B are both disjoint closed sets of X. By hypothesis, there exists a $*$-clopen set U of X such that $A \subseteq U$ and $B \subseteq X - U$. Let $e \in C(X)$ be a projection such that $e(x) = 1$ for any $x \in U$ and $e(x) = 0$ for any $x \in X - U$. Let $u = f - e$. For any $x \in U$, $e(x) = 1$. If $f(x) = 1$, then
then $x \in B$, and so $x \in X - U$, a contradiction. Thus, $f(x) \neq 1$. This implies that $u(x) \neq 0$ for any $x \in U$. If $x \in X - U$, then $e(x) = 0$. If $f(x) = 0$, then $x \in A \subseteq U$, a contradiction, and so $f(x) \neq 0$. This implies that $u(x) \neq 0$ for any $x \in X - U$. Therefore $u(x) \neq 0$ for any $x \in X$. Hence $u^{-1}(x) := \frac{1}{u(x)}$ for any $x \in X$. That is, $u \in C(X)$ is invertible. Therefore $f = e + u \in C(X)$ is $*$-clean.

Conversely, assume that (1) and (2) hold. Let A and B be disjoint closed sets. Then A and B are completely separated. In light of [5, Theorem 1.15], A and B are contained in disjoint zero sets. Thus, we can find some $f_1, f_2 \in C(X)$ such that $A \subseteq Z(f_1), B \subseteq Z(f_2)$ and $Z(f_1) \cap Z(f_2) = \emptyset$. This shows that $|f_1| + |f_2| > 0$. Choose $h = \frac{|f_1|}{|f_1| + |f_2|} \in C(X)$. Since $C(X)$ is $*$-clean, there exist a projection $e \in C(X)$ and a unit $u \in C(X)$ such that $h = e + u$. For any $x \in X$, $e(x) \cdot e(x) = e(x)$, and so $e(x) = 0$ or $e(x) = 1$. Set $U = \{x \in X \mid e(x) = 0\}$ and $V = \{x \in X \mid e(x) = 1\}$. Then $X = U \bigcup V$. As U and V are closed, and so V is clopen. Further, V is $*$-clopen. As $u \in C(X)$ is a unit, we see that $u(x) \neq 0$ for all $x \in X$. For any $x \in A$, we see that $f_1(x) = 0$, and so $h(x) = 0$. Thus, $e(x) \neq 0$ as $u(x) \neq 0$, and then $x \in V$. That is, $A \subseteq V$. For any $x \in B$, $f_2(x) = 0$, and so $h(x) = 1$. This implies that $e(x) = 0$; hence, $x \in X - V$. Thus, $B \subseteq X - V$. Therefore X is strongly $*$-zero-dimensional.

Theorem 2. Let R be a $*$-ring. Then R is strongly $*$-clean if and only if

1. R is an abelian exchange ring;
2. $C(Spec(R))$ is $*$-clean.

Proof. If R is strongly $*$-clean, then (1) and (2) follows from Theorem 1 and Lemma 3.

Conversely, assume that (1) and (2) hold. Then R is strongly clean. In view of [3, Lemma 17.1.12], $Spec(R)$ is strongly zero dimensional. Thus, for any disjoint closed sets A and B of $Spec(R)$, there exists a clopen U such that $A \subseteq U$ and $B \subseteq Spec(R) - U$. It follows from Urysohn’s Lemma, there exists a continuous function $f: Spec(R) \to [0, 1]$ such that $f(x) = 0$ for all $x \in A$ and $f(x) = 1$ for all $x \in B$. Thus, A and B are completely separated. By virtue of Lemma 3, $Spec(R)$ is strongly $*$-zero-dimensional. Therefore we complete the proof from Theorem 1.

The condition “$C(Spec(R))$ is $*$-clean" in Theorem 2 is necessary, as the following shows.

Example 1. Let $R = \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Then the map $*: R \to R, (a, b)^* = (b, a)$ is an involution. Obviously, R is an abelian exchange ring. Further, R is a commutative $*$-ring. But R is not strongly $*$-clean, as the idempotent $e = (1, 0) \in R$ is not a projection (see [8, Theorem 2.2]).

3. Extensions to $*$-Subspaces

Let I be an ideal of a $*$-ring R, and let $E_M(I) = \{P \in Max(R) \mid I \nsubseteq P\}$. Set $V_M(I) = Max(R) - E_M(I)$. Then $Max(R)$ is a topological space with closed
sets \(V_M(I) \). Denote \(M^* = \{ a \in R \mid a^* \in M \} \) for a maximal ideal \(M \). Clearly, \(M \in \text{Max}(R) \) if and only if \(M^* \in \text{Max}(R) \). Construct a map \(* : C(\text{Max}(R)) \rightarrow C(\text{Max}(R)) \) given by \(f \mapsto f^* \), where \(f^*(M) = f(M^*) \) for any \(M \in \text{Max}(R) \). As in the proof of Lemma 1, \(* \) is an anti-automorphism of \(C(\text{Max}(R)) \). Therefore \(\text{Max}(R) \) is a \(* \)-space.

Lemma 4. Let \(R \) be a \(* \)-ring. Then \(R \) is strongly \(* \)-clean if and only if

1. \(R \) is an abelian exchange ring;
2. \(\text{Max}(R) \) is strongly \(* \)-zero-dimensional.

Proof. Suppose that \(R \) is strongly \(* \)-clean. Then it is an abelian exchange ring. As in the proof of Lemma 1, \(a - e \in U(R) \) and only if \(V_M(a - 1) \subseteq \text{Max}(R) - V_M(e) \), where \(e \in R \) is a projection. Let \(A \) and \(B \) be disjoint closed sets of \(\text{Max}(R) \). Analogously to the discussion in Theorem 1, there exists a projection \(e \in R \) such that \(A \subseteq V_M(e) \) and \(B \subseteq V_M(1 - e) \). Define \(f : \text{Max}(R) \rightarrow \mathbb{R} \) given by \(f(M) = 1 \) for any \(M \in V_M(e) \) and \(f(M) = 0 \) for any \(M \in V_M(1 - e) \). Then \(f \in C(\text{Max}(R)) \). Similar to the consideration in Theorem 1, \(V_S(e) \) is a \(* \)-clopen set. Therefore \(\text{Max}(R) \) is strongly \(* \)-zero-dimensional.

Conversely, assume that (1) and (2) hold. Then \(R \) is clean. In view of [3, Theorem 17.1.13], \(R \) is a pm ring, where a ring is a pm ring provided that each prime ideal is contained in exactly one maximal ideal. Thus, there exists a map \(\varphi : \text{Spec}(R) \rightarrow \text{Max}(R) \), \(\varphi(P) = M \), where \(M \) is the unique maximal ideal such that \(P \subseteq M \). It is easy to check that \(\varphi(V_M(I)) = V_M(I) \). This shows that \(\varphi \) is continuous. For any disjoint closed sets \(A, B \subseteq \text{Spec}(R) \), there exist two ideals \(I \) and \(J \) of \(R \) such that \(A = V_S(I) \) and \(B = V_S(J) \). Hence, \(\varphi(A) \) and \(\varphi(B) \) are both closed. As \(V_S(I) \cap V_S(J) = \emptyset \), we see that \(V_S(I + J) = \emptyset \); hence, \(I + J = R \). Thus, we infer that \(V_M(I) \cap V_M(J) = V_M(I + J) = V_M(R) = \emptyset \). This shows that \(\varphi(A) \) and \(\varphi(B) \) are disjoint closed sets of \(\text{Max}(R) \). By hypothesis, \(\text{Max}(R) \) is strongly \(* \)-zero-dimensional, there exist disjoint \(* \)-clopen sets \(U, V \subseteq \text{Max}(R) \) such that \(V_M(I) \subseteq U \), \(V_M(J) \subseteq V \). Clearly, \(A \subseteq \varphi^-(\varphi(A)) \subseteq \varphi^-(U) \) and \(B \subseteq \varphi^-(\varphi(B)) \subseteq \varphi^-(V) \). Clearly, \(\varphi^-(U) \) and \(\varphi^-(V) \) are clopen. For any \(P \in \varphi^-(U) \cap \varphi^-(V) \), there exists a unique \(M \in \text{Max}(R) \) such that \(P \subseteq M \). Hence, \(M \in U \cap V \), a contradiction. This shows that \(\varphi^-(U) \cap \varphi^-(V) = \emptyset \).

As \(U \) is a \(* \)-clopen set of \(\text{Max}(R) \), there exists a projection \(e \in C(\text{Max}(R)) \) such that \(e(x) = 1 \) for any \(x \in U \) and \(e(x) = 0 \) for any \(x \in \text{Max}(R) - U \). Construct a function \(f : \text{Spec}(R) \rightarrow \mathbb{R} \) given by \(P \mapsto e\varphi(P) \) for any \(P \in \text{Spec}(R) \). Then \(f \in C(\text{Spec}(R)) \) is a projection. Further, we see that \(f(y) = e\varphi(y) = 1 \) for any \(y \in \varphi^-(U) \) and \(f(y) = e\varphi(y) = 0 \) for any \(y \in \text{Spec}(R) - \varphi^-(U) \). This implies that \(\varphi^-(U) \) is \(* \)-clopen. Likewise, \(\varphi^-(V) \) is \(* \)-clopen. Therefore \(\text{Spec}(R) \) is strongly \(* \)-zero-dimensional, and thus completing the proof by Theorem 1.

Theorem 3. Let \(R \) be a \(* \)-ring. Then \(R \) is strongly \(* \)-clean if and only if

1. \(R \) is an abelian exchange ring;
2. \(C(\text{Max}(R)) \) is \(* \)-clean.
Example 2. Let

\[e = 17.1.13 \]

Max add as the identity. Then

According to Lemma 3, \(Max(R) \) is strongly \(*\)-zero-dimensional. This completes the proof by Lemma 4.

The following observation is crucial.

Example 2. Let \(R = \left\{ \frac{m}{n} \in \mathbb{Q} \mid m, n \in \mathbb{Z}, (n, 6) = 1 \right\} \). We choose the involution as the identity. Then \(R \) is a commutative ring. Clearly, \(Max(R) = \{2R, 3R\} \). As \(Max(R) \) is a finite set, it follows from [5, Remark 2.3] that \(C(Max(R)) \) is \(*\)-clean. But \(R \) is not strongly \(*\)-clean. In fact, \(R \) is not an exchange ring.

Clearly, the Jacobson radical \(J(R) \) is semiprime, and so \(J(R) \) is the intersection of some prime ideals. Thus, \(J(R) = \bigcap_{P \in J-spec(R)} P \). Let \(I \) be an ideal of \(R \), and let \(F(I) = \{ P \in J-spec(R) \mid I \not\subseteq P \} \). Then \(F(R) = J-spec(R), F(0) = \emptyset, F(I) \cap F(J) = F(IJ) \) and \(\bigcup I F(I) = F(\bigcup I I) \). So \(J-spec(R) \) is a topological subspace of \(Spec(R) \), where \(\{ F(I) \mid I \subseteq R \} \) is the collection of its open sets. Let \(W(I) = J-spec(R) - F(I) \). Then \(W(I) = \{ P \in J-spec(R) \mid I \subseteq P \} \) is the collection of its closed sets. Let \(R \) be a \(*\)-ring. As in the proof of Lemma 1, \(J-spec(R) \) is a \(*\)-space. The next aim is to investigate strong \(*\)-cleanness of \(*\)-rings by such \(*\)-subspaces. The following observation will clear our path.

Lemma 5. Let \(R \) be a \(*\)-ring. Then \(R \) is strongly \(*\)-clean if and only if

(1) \(R \) is an abelian exchange ring;

(2) \(R/J(R) \) is strongly \(*\)-clean.

Proof. One direction is obvious. Conversely, assume that (1) and (2) hold. For any \(a \in R \), there exists a projection \(\overline{f} = f + J(R) \in R/J(R) \) and a unit \(\overline{e} \in R/J(R) \) such that \(\overline{a} = \overline{e} + \overline{a} \). As \(f - f = 0 \) in \(J(R) \), by hypothesis, there exists an idempotent \(e \in R \) such that \(f - e \in J(R) \). Since every unit lifts modulo \(J(R) \), we may assume that \(u \in U(R) \). Thus, \(a = e + u + r \) for some \(r \in J(R) \). Set \(v = u + r \). Then \(a = e + v \) with \(e = e^2 \in R, v \in U(R) \). As \(R \) is abelian, \(ae = ea \) and \(ae^* = e^*a \). Further, \(e - e^* = f - f \in J(R) \).

Let \(p = 1 + (e^* - e)(e^* - e) \). As \(ae = ea, ae^* = e^*a \), we see that \(ap = pa \). Clearly, \(p \in U(R) \). Write \(q = p^{-1} \). Then \(p^* = p \), and so \(q^* = q \). Further, \(ep = e(1 - e - e^* + ee^* + e^* e) = ee^* e = (1 - e - e^* + ee^* + e^* e) e = pe \). Thus, we see that \(eq = q \) and \(e^* q = q e^* \). Set \(g = e^* q \). Then \(g^2 = e^* q e^* q = q e^* e^* q = q e^* e^* q = e^* q = g \). In addition, \(g^* = q^* e^* = ee^* q = g \), i.e., \(g \in R \) is a projection. As \(aq = qa \), we see that \(ag = ga \). One easy check that \(eg = g \) and \(ge = ee^* q e = ee^* q = epq = e \). This
implies that \(e - g = e - ee^*q = e(ep - ee^*)q = ee^*(e - e^*)q \in J(R) \).
Therefore \(a = e + v = g + (e - g) + v \). Clearly, \((e - g) + v \in U(R) \). Let \(w = (e - g) + v \).
Then \(a = g + w, \ g^2 = g = g^* \), \(w \in U(R) \) and \(ag = ga \). Therefore \(R \) is strongly *-clean.

\[\square \]

Theorem 4. Let \(R \) be a *-ring. Then \(R \) is strongly *-clean if and only if

1. \(R \) is an abelian exchange ring;
2. \(C(J \text{-spec}(R)) \) is *-clean.

Proof. Construct a map \(\varphi : J \text{-spec}(R) \to \text{Spec}(R/J(R)) \) given by \(P \mapsto \overline{P} \) for any \(P \in J \text{-spec}(R) \). Then \(\varphi \) is a continuous map. If \(\varphi(P) = \varphi(Q) \), then \(\overline{P} = \overline{Q} \). For any \(p \in P \), write \(p + J(R) = q + J(R) \) for some \(q \in Q \). This implies that \(p \in q + J(R) \subseteq Q \) and so \(P \subseteq Q \). Likewise, \(Q \subseteq P \). Hence, \(P = Q \), and so \(\varphi \) is injective. For any \(\overline{P} \in \text{Spec}(R/J(R)) \), then \(P \in J \text{-spec}(R) \), and then \(\varphi \) is surjective. That is, \(\varphi \) is bijective. Further, one can easily check that \(\varphi \) is a homeomorphism. Construct a map \(\phi : C(J \text{-spec}(R)) \to C(\text{Spec}(R/J(R))) \) given by \(f \mapsto f \varphi^{-1} \) for any \(f \in C(J \text{-spec}(R)) \). In addition, \(\varphi(f^*) = (\varphi(f))^* \). Therefore \(C(J \text{-spec}(R)) \) and \(C(\text{Spec}(R/J(R))) \) are *-isomorphic.

If \(R \) is strongly *-clean, then \(R \) is an abelian exchange ring. In view of Lemma 5, \(R/J(R) \) is strongly *-clean. It follows from Theorem 2, \(C(\text{Spec}(R/J(R))) \) is strongly *-clean, and therefore so is \(C(J \text{-spec}(R)) \). Conversely, assume that (1) and (2) hold. Then \(R/J(R) \) is an abelian exchange ring and \(C(\text{Spec}(R/J(R))) \) is strongly *-clean. In light of Theorem 2, \(R/J(R) \) is strongly *-clean. Therefore \(R \) is strongly *-clean by Lemma 5.

\[\square \]

Corollary 1. Let \(R \) be a *-ring. Then \(R \) is strongly *-clean if and only if

1. \(R \) is an abelian exchange ring;
2. \(J \text{-spec}(R) \) is strongly *-zero-dimensional.

Proof. Suppose that \(R \) is strongly *-clean. Then \(R \) is an abelian exchange ring. It follows by Theorem 4 that \(C(J \text{-spec}(R)) \) is *-clean. Analogously to the proof of Theorem 2, any two disjoint closed sets of \(J \text{-spec}(R) \) are completely separated. Therefore \(J \text{-spec}(R) \) is strongly *-zero-dimensional from Lemma 3.

Conversely, assume that (1) and (2) hold. In view of Lemma 3, \(C(J \text{-spec}(R)) \) is *-clean. Hence the result follows by Theorem 4.

\[\square \]

Combining Theorems 2, 3 and 4, we come now to the following main result.

Theorem 5. Let \(R \) be a *-ring, and let \(X \) be a spectrum space of \(R \). Then \(R \) is strongly *-clean if and only if

1. \(R \) is an abelian exchange ring;
2. \(C(X) \) is *-clean.
4. THE RING OF BOUNDED CONTINUOUS FUNCTIONS

Let X be a topological space. $C^*(X)$ denote the subring of $C(X)$ of all bounded functions. In the following lemma we follow the technique of [1, Lemma 2.1].

Lemma 6. Let X be a $*$-space. Then $f \in C(X)$ is $*$-clean if and only if there exists a $*$-clopen set U in X such that $f^{-1}(1) \subseteq U \subseteq X - Z(f)$.

Proof. Let $f \in C(X)$ be $*$-clean. Then there exists a projection $e \in C(X)$ such that $f - e \in U(C(X))$. Set $U = Z(e)$. Clearly, $X = Z(e) \cup Z(1 - e)$, $e(Z(e)) = \{0\}$ and $e(Z(1 - e)) = \{1\}$. Thus, U is a $*$-clopen set. One easily checks that $f^{-1}(1) \subseteq U \subseteq X - Z(f)$. Conversely, assume that $f^{-1}(1) \subseteq U \subseteq X - Z(f)$ for a $*$-clopen set U. Then $U = Z(e)$ for some projection e. Construct $u : X \to \mathbb{R}$ given by $u(x) = f(x)$ for any $x \in Z(e)$ and $u(x) = f(x) - 1$ for any $x \in X - Z(e)$. Then $u = f - e$. If $x \in Z(e)$, then $x \not\in Z(f)$, and so $f(x) \neq 0$. Hence, $u(x) \neq 0$. If $x \in X - Z(e)$, then $x \not\in f^{-1}(1)$, and so $f(x) \neq 1$. This implies that $u(x) \neq 0$. Consequently, $u \in U(C(X))$, as required.

Lemma 7. Let R be a $*$-ring, and let X be a spectrum space of R. Then $C(X)$ is $*$-clean if and only if so is $C^*(X)$.

Proof. For any $f \in C^*(X)$, we define $f^* : X \to \mathbb{R}$ given by $f^*(P) = f(P^*)$ for any $P \in X$. One easily checks that $f^* \in C^*(X)$. This induces an involution $*: C^*(X) \to C^*(X)$ given by $f \mapsto f^*$. Therefore $C^*(X)$ is a $*$-ring.

Suppose that $C(X)$ is $*$-clean. Let $f \in C^*(X)$. Choose $A = \{x \in X | f(x) \geq \frac{2}{3}\}$ and $B = \{x \in X | f(x) \leq \frac{1}{3}\}$. Construct a function $g \in C(X)$ such that $g(x) = 1, x \in A; g(x) = 0, x \in B$ and $g(x) = \frac{1}{2}$, otherwise. Then $g \in C(X)$ is $*$-clean. In view of lemma 6, there exists a $*$-clopen set U in X such that $g^{-1}(1) \subseteq U \subseteq X - Z(g)$. Write $U = Z(e)$ for a projection $e \in C(X)$. Construct $u : X \to \mathbb{R}$ given by $u(x) = f(x)$ for any $x \in Z(e)$ and $u(x) = f(x) - 1$ for any $x \in X - Z(e)$. Then $u = f - e$. If $x \in Z(e)$, then $x \not\in Z(g)$, and so $g(x) \neq 0$. Thus, $x \not\in B$, and so $f(x) \neq 0$. This shows that $u(x) \neq 0$. If $x \in X - Z(e)$, then $x \not\in g^{-1}(1)$, and so $g(x) \neq 1$. Hence, $x \not\in A$. This shows that $f(x) \neq 1$. This implies that $u(x) \neq 0$. In addition, $u \in C^*(X)$. Therefore $u \in U(C^*(X))$, and thus $f \in C^*(X)$ is $*$-clean, as desired.

We now assume $C^*(X)$ is $*$-clean. Let $f \in C(X)$. Set $h(x) = \{ -1, \quad \text{if } f(x) < -1;
1, \quad \text{if } f(x) \geq -1. \}$

Choose $g(x) = \{ h(x), \quad \text{if } h(x) < 1;
1, \quad \text{if } h(x) \geq 1. \}$

Then $g \in C^*(X)$. By hypothesis, g is $*$-clean. This implies that $g \in C(X)$ is $*$-clean. In view of Lemma 6, there exists a $*$-clopen set U in X such that $g^{-1}(1) \subseteq U \subseteq X - Z(g)$. It is easy to check that $f^{-1}(1) \subseteq g^{-1}(1)$ and $X - Z(g) \subseteq X - Z(f)$. Therefore $f^{-1}(1) \subseteq U \subseteq X - Z(f)$. This completes the proof by Lemma 6. \[\square\]
Theorem 6. Let R be a $*$-ring, and let X be a spectrum space of R. Then R is strongly $*$-clean if and only if

1. R is an abelian exchange ring;
2. $C^*(X)$ is $*$-clean.

Proof. In view of Lemma 7, $C(X)$ is strongly $*$-clean if and only if so is $C^*(X)$. Therefore we complete the proof by Theorem 5.

The Stone-Cech compactification βX of a topological space X is the largest compact Hausdorff space "generated" by X, in the sense that any map from X to a compact Hausdorff space factors through βX (in a unique way). That is, βX is a compact Hausdorff space together with a continuous map from X and has the following universal property: any continuous map $f : X \to K$, where K is a compact Hausdorff space, lifts uniquely to a continuous map $\beta f : \beta X \to K$.

Corollary 2. Let R be a $*$-ring, and let X be a spectrum space of R. Then R is strongly $*$-clean if and only if

1. R is an abelian exchange ring;
2. The Stone-Cech compactification βX of X is strongly $*$-zero dimensional.

Proof. Suppose that R is strongly $*$-clean. Then R is an abelian exchange ring. In view of [5, Remark 6.6], $C(\beta X) \cong C^*(X)$. Thus, $C(\beta X)$ is $*$-clean by Theorem 6. Hence, βX is a $*$-space. Clearly, $C(\beta X)$ is a commutative clean ring. According to [1, Theorem 2.5], βX is strongly zero dimensional. This shows that any two disjoint closed sets of βX are completely separated. Therefore βX of X is strongly $*$-zero dimensional by Lemma 3.

Conversely, assume that (1) and (2) hold. In light of Lemma 3, $C(\beta X)$ is $*$-clean. By virtue of [5, Remark 6.6], $C^*(X)$ is $*$-clean. Accordingly, R is strongly $*$-clean from Theorem 6.

Corollary 3. Let R be a $*$-ring, and let X be a spectrum space of R. Then R is strongly $*$-clean if and only if

1. R is an abelian exchange ring;
2. $\text{Max}(C^*(X))$ is strongly $*$-zero dimensional.

Proof. By virtue of [5, 14.8] or [10, p. 463], the prime ideals containing a given ideal forms a chain in $C^*(X)$, and so $C^*(X)$ is a pm-ring. In view of [3, Corollary 17.1.14], $C^*(X)$ is $*$-clean. This completes the proof by Theorem 6.

5. Strong $*$-Cleaness of $q(X)$

Let R be a commutative $*$-ring with an identity, and let $q(R)$ be the classical ring of quotients of R. We say that $x \in R$ is self-adjoint provided that $x^* = x$. Construct a ring morphism $*: q(R) \to q(R), \frac{r}{s} \mapsto \frac{r^*}{s^*}$. Then $*$ is also an involution of $q(R)$. Thus, $q(R)$ is a $*$-ring.
Let $N_D(R)$ denote the set of all nonzero divisors of R, and let $N_D(X) := N_D(C(X))$ for a topological space X.

Lemma 8. Let R be a commutative $*$-ring. If $e \in q(R)$ is self-adjoint, then there exist self-adjoint $a, b \in R$ such that $e = \frac{a}{b}$.

Proof. Write $e = \frac{a}{b}$. As $e \in q(R)$ is self-adjoint, $e^* = \left(\frac{a}{b}\right)^* = \frac{a^*}{b^*} = \frac{a}{b}$. Thus, $c^*d = d^*c$. Clearly, $d, d^* \in N_D(R)$; hence, $e = \frac{cd^*}{d^*c}$. Set $a = cd^*$ and $b = dd^*$. Then $a^* = (cd^*)^* = a$ and $b^* = b$. That is, $a, b \in R$ are self-adjoint. In addition, $e = \frac{a}{b}$, as required. □

Lemma 9. Let R be a commutative $*$-ring. Then the following are equivalent:

1. $q(R)$ is $*$-clean.
2. For any $a, b \in R$ with $\alpha + \beta \in N_D(R)$, there exist self-adjoint $x \in aR, y \in bR$ such that $x + y \in N_D(R)$ and $xy = 0$.
3. For any $a, b \in R$ with $\alpha + \beta \in N_D(R)$, there exist $x \in aR, y \in bR$ such that $x + y \in N_D(R), xy = 0$ and x^*y is self-adjoint.

Proof. (1) \Rightarrow (2) Suppose that $a + b \in N_D(R)$ with $a, b \in R$. Then there exists some $\alpha \in q(R)$ such that $\alpha a + \beta a = 1$. Since $q(R)$ is $*$-clean, we can find a projection $e \in q(R)$ such that $e \in baq(R) \subseteq bq(R)$ and $1 - e \in aaq(R) \subseteq aq(R)$. Write $e = \frac{ba}{T} = \frac{baq}{Tq}$. Set $w = bst^*$ and $u = tt^*$. Then $e = \frac{uw}{w}$, where $w, u \in R$ are self-adjoint and $w \in bR$. Analogously, $1 - e = \frac{zt}{t}$, where $z, t \in R$ are self-adjoint and $z \in aR$. Obviously, $\frac{w}{w} + \frac{zt}{t} = 1$, and so $w(zt) = ut$. Choose $x = wt$ and $y = zu$. Then $x + y = ut \in N_D(R)$. Further, $xy = (wz)(ut) = 0$ and $x, y \in R$ are self-adjoint.

(2) \Rightarrow (3) is trivial.

(3) \Rightarrow (1) Suppose that $\frac{a}{b} + \frac{c}{d} = 1$ in $q(R)$. Then $a + b = s \in N_D(R)$. By hypothesis, there exist $x \in aR, y \in bR$ such that $x + y \in N_D(R), xy = 0$ and x^*y is self-adjoint. Let $e = \frac{x^*y}{x+y}$. Then $e(1 - e) = \frac{xx^*y}{x+y} = 0$, and so $e = e^2 \in q(R)$ is an idempotent. Since $x^*y \in R$ is self-adjoint, we see that $(x^*y)^* = x^*y = xy^*$, and so $e^* = \frac{x^*y}{x^*y} = \frac{x^*y}{x+y} = e$; hence, $e \in q(R)$ is a projection. Moreover, $e = \frac{x^*y}{x+y} \in (\frac{a}{b})q(R)$ and $1 - e = \frac{y}{x+y} \in (\frac{c}{d})q(R)$. Therefore $q(R)$ is strongly $*$-clean. □

Let X be a $*$-space. Then $C(X)$ is a $*$-ring. We denote $q(C(X))$ by $q(X)$, and so $q(X)$ is a $*$-ring. We say that U is a $*$-zero set of X provided that there exists a self-adjoint $f \in C(X)$ such that $A = Z(f)$. Let A be a subset of X. We say that A is nowhere dense if every open set of X contains an open subset that is disjoint from A. This is equivalent to saying that the closure of A contains no open set of A which is not empty. Clearly, every subset of a nowhere dense set is nowhere dense. We say that A is dense in X if $X - A$ is nowhere dense.

Recall that a topological space X is completely regular if for every point and a closed set not containing the point, there is a continuous function that has value 0 at the given point and value 1 at each point in the closed set. Almost every topological
By hypothesis, there exists an open subset.

Lemma 10. Let X be a completely regular space, and let \(f \in C(X) \). Then the following are equivalent:

1. \(f \in N_D(X) \).
2. \(Z(f) \) is nowhere dense.

Proof. (2) \(\Rightarrow \) (1) Assume that \(f \phi = 0 \) for a \(\phi \in C(X) \). Assume that \(Z(\phi) \neq X \).

Assume that there exists an open subset \(B \) of \(X - Z(\phi) \) such that \(Z(f) \cap B = \emptyset \). Thus, we can find \(x \in B \) such that \(x \notin Z(f) \). This implies that \(f(x), \phi(x) \neq 0 \). This yields that \(f\phi \neq 0 \), a contradiction. Thus, \(Z(\phi) = X \), and so \(\phi = 0 \). This means that \(f \in N_D(X) \).

(1) \(\Rightarrow \) (2) Let \(C \) be an open set of \(X \), and let \(B = C \cap (X - Z(f)) \). If \(B \neq \emptyset \), then \(B \) is an open subset of \(C \).

In addition, \(Z(f) \cap B = \emptyset \). If \(B = \emptyset \), then we have \(C \subseteq Z(f) \), and so \(f(C) = 0 \). Choose \(a \in C \).

Since \(X \) is a completely regular space, we can find some \(g \in C(X) \) such that \(g(x) = 0 \) for any \(x \in X - C \) and \(g(a) = 1 \).

This implies that \(fg = 0 \). By hypothesis, \(g = 0 \), a contradiction. Therefore we complete the proof.

Theorem 7. Let \(X \) be a completely regular \(* \)-space. Then the following are equivalent:

1. \(g(X) \) is \(* \)-clean.
2. For any zero sets \(A \) and \(B \) of \(X \) such that \(A \cap B \) is nowhere dense, there exist \(* \)-zero sets \(U, V \) such that \(A \subseteq U, B \subseteq V \) such that \(U \cap V \) is nowhere dense and \(U \cup V = X \).

Proof. (1) \(\Rightarrow \) (2) For any zero sets \(A \) and \(B \) of \(X \) such that \(A \cap B \) is nowhere dense, we can write \(A = Z(f) \) and \(B = Z(g) \).

Since \(Z(f^2 + g^2) = Z(f) \cap Z(g) = U \cap V \) is nowhere dense, it follows from Lemma 10 that \(f^2 + g^2 \in N_D(X) \). In view of Lemma 9, there exist self-adjoint \(h \in f^2C(X), k \in g^2C(X) \) such that \(h + k \in N_D(X) \) and \(hk = 0 \).

Let \(U = Z(h) \) and \(V = Z(k) \). Then \(A \subseteq U, B \subseteq V \). In addition, \(U \cup V = Z(h) \cup Z(k) = Z(hk) = Z(0) = X \).

Further, \(U \cap V = Z(h) \cap Z(k) = Z(h^2 + k^2) \). As \(h^2 + k^2 = (h + k)^2 \), we see that \(U \cap V = Z((h + k)^2) = Z(h + k) \) is nowhere dense from Lemma 10.

Since \(h, k \in q(X) \) are self-adjoint, \(U \) and \(V \) are both \(* \)-zero sets, as required.

(2) \(\Rightarrow \) (1) Let \(f, g \in C(X) \) such that \(f + g \in N_D(X) \). Let \(A = Z(f) \) and \(B = Z(g) \).

Then \(A \cap B = Z(f) \cap Z(g) \subseteq Z(f + g) \); hence, \(A \cap B \) is nowhere dense from Lemma 10. By hypothesis, there exist \(* \)-zero sets \(U, V \) such that \(A \subseteq U, B \subseteq V \) such that \(U \cap V \) is nowhere dense and \(U \cup V = X \).

Thus, we can find self-adjoint \(h, k \in C(X) \) such that \(U = Z(h) \) and \(V = Z(k) \).

Set \(\varphi = fh \in fC(X) \) and \(\psi = gk \in gC(X) \). Then \(Z(\varphi) = Z(fh) = Z(f) \cup Z(h) = Z(h) \).

Likewise, \(Z(\psi) = Z(k) \).

Thus, \(Z(\varphi^2 + \psi^2) = Z(\varphi) \cap Z(\psi) = Z(h) \cap Z(k) \) is nowhere dense, and so...
\[\varphi^2 + \psi^2 \in N_D(X) \text{ from Lemma 10. As } Z(\varphi^2\psi^2) = Z(\varphi) \cup Z(\psi) = Z(h) \cup Z(k) = X, \text{ we see that } \varphi^2\psi^2 = 0. \] In addition, it follows from \(Z(hk) = Z(h) \cup Z(k) = X \) that \(hk = 0 \). Therefore \((\varphi^2)^*\psi^2 = (fg)^2hk(hk) = 0 \). According to Lemma 9, \(q(X) \) is *-clean.

Lemma 11. Let \(X \) be a completely regular *-space. Then \(C(X) \) is *-clean if and only if

1. \(X \) is strongly zero-dimensional;
2. \(q(X) \) is *-clean.

Proof. Suppose that \(C(X) \) is *-clean. Then \(q(X) \) is *-clean. By [1, Theorem 2.5], \(X \) is strongly zero-dimensional, as desired.

Conversely, assume that (1) and (2) hold. Let \(A \) and \(B \) be disjoint closed sets. Since \(X \) is strongly zero-dimensional, there exists a clopen set \(U \) such that \(A \subseteq U \) and \(B \subseteq \bar{V} \). Thus, there exists an \(e \in C(X) \) such that \(e(x) = 1 \) for any \(x \in U \) and \(e(x) = 0 \) for any \(x \in X - U \). Clearly, \(e = e^2 \in C(X) \). By hypothesis, we have a projection \(f \in q(X) \) and a unit \(u \in q(X) \) such that \(e = f + u \). In view of Lemma 8, write \(f = = \frac{e}{2} \) with self-adjoint \(a, b \in R \). Since \(e, f \in q(X) \) are idempotents, we see that \((e-f)^3 = e-f \), and so \(u^2 = 1 \). That is, \((e-f)^2 = 1 \). This implies that \(e(1-2f) = 1-f \), and so \(e = (1-2f)(1-f) \). This means that \[e = \frac{(b-2a)(b-a)}{2b^2}, \] and so \(eb^2 = (b-2a)(b-a) \). Since \(a, b \in R \) are self-adjoint, we see that \(e^*b^2 = ((b-2a)(b-a))^* = (b-2a)(b-a) = eb^2 \). But \(b \in N_D(R) \), and so \(e = e^* = e^2 \). Thus, \(U \) is a *-clopen; hence that \(X \) is strongly *-zero-dimensional. According to Lemma 3, we complete the proof.

Theorem 8. Let \(R \) be a *-ring, and let \(X \) be a spectrum space of \(R \). Then \(R \) is a strongly *-clean ring if and only if

1. \(R \) is an abelian exchange ring;
2. \(q(X) \) is *-clean.

Proof. Since every locally compact Hausdorff space is completely regular, we see that the spectrum space \(X \) of \(R \) is always completely regular.

If \(R \) is a strongly *-clean ring, then \(R \) is an abelian exchange ring. By virtue of Theorem 5, \(C(X) \) is *-clean. In light of Lemma 11, \(q(X) \) is *-clean.

Conversely, assume that (1) and (2) hold. Then \(X \) is strongly zero-dimensional. According to Lemma 11, \(C(X) \) is *-clean. Therefore \(R \) is strongly *-clean by Theorem 5.

References

Current address: Huanyin Chen: Department of Mathematics, Hangzhou Normal University, Hangzhou, 310036, China.
E-mail address: huanyinchen@aliyun.com

Current address: Abdullah Harmanci: Hacettepe University, Department of Mathematics, 06800 Beytepe Ankara, Turkey.
E-mail address: harmanci@hacettepe.edu.tr