Abstract. The sequence space BV_σ was introduced and studied by Mursaleen [9]. In this paper we extend BV_σ to $BV_\sigma(M,p,r)$ and study some properties and inclusion relations on this space.

1. Introduction

Let l_∞ and c denote the Banach spaces of bounded and convergent sequences $x = (x_k)_{k=1}^\infty$ respectively. Let σ be an injection of the set of positive integers \mathbb{N} into itself having no finite orbits and T be the operator defined on l_∞ by $T((x_n)_{n=1}^\infty) = (x_{\sigma(n)})_{n=1}^\infty$.

A positive linear functional ϕ, with $\|\phi\| = 1$, is called a σ - mean or an invariant mean if $\phi(x) = \phi(Tx)$ for all $x \in l_\infty$.

A sequence x is said to be σ - convergent , denoted by $x \in V_\sigma$, if $\phi(x)$ takes the same value, called $\sigma - \lim x$, for all σ- means ϕ. We have (see Schaefer [14])

$$V_\sigma = \left\{ x = (x_n) : \sum_{m=1}^{\infty} t_{m,n}(x) = L \text{ uniformly in } n, \ L = \sigma - \lim x \right\},$$

where for $m \geq 0$, $n > 0$

$$t_{m,n}(x) = \frac{x_n + x_{\sigma(n)} + \cdots + x_{\sigma^m(n)}}{m + 1}, \text{ and } t_{-1,n} = 0,$$

where $\sigma^m(n)$ denotes the mth iterate of σ at n. In particular, if σ is the translation, a σ - mean is often called a Banach limit and V_σ reduces to f , the set of almost

Received by the editors Nov. 01, 2007; Accepted: Sept. 05, 2008.
2000 Mathematics Subject Classification. Primary 40F05, 40C05, 46A45.

Key words and phrases. Invariant mean, Paranorm, Orlicz function, Solid space .

©2008 Ankara University
convergent sequences (see Lorentz [5]). Subsequently invariant means have been studied by Ahmad and Mursaleen [1], Mursaleen [8], Raimi [12] and many others.

The concept of paranorm is closely related to linear metric spaces. It is a generalization of that of absolute value. Let X be a linear space. A function $g : X \to \mathbb{R}$ is called paranorm, if

- $g(x) \geq 0$, for all $x \in X$,
- $g(-x) = g(x)$, for all $x \in X$,
- $g(x + y) \leq g(x) + g(y)$, for all $x, y \in X$,
- If (λ_n) is a sequence of scalars with $\lambda_n \to \lambda$ ($n \to \infty$) and (x_n) is a sequence of vectors with $g(x_n - x) \to 0$ ($n \to \infty$), then $g(\lambda_n x_n - \lambda x) \to 0$ ($n \to \infty$).

A paranorm g for which $g(x) = 0$ implies $x = 0$ is called a total paranorm on X, and the pair (X, g) is called a totally paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (cf. [15, Theorem 10.4.2, p. 183]).

A map $M : \mathbb{R} \to [0, +\infty]$ is said to be an Orlicz function if M is even, convex, left continuous on \mathbb{R}_+, continuous at zero, $M(0) = 0$ and $M(u) \to \infty$ as $u \to \infty$. If M takes value zero only at zero we will write $M > 0$ and if M takes only finite values we will write $M < \infty$. [2,3,6,7,10,13].

W. Orlicz [11] used the idea of orlicz function to construct the space (L^M). Lindenstrauss and Tzafriri [4] used the idea of Orlicz function to define orlicz sequence space

$$\ell_M := \left\{ x \in \omega : \sum_{k=1}^{\infty} M \left(\frac{|x_k|}{\rho} \right) < \infty \text{ for some } \rho > 0 \right\}$$

in more detail. ℓ_M is a Banach space with the norm

$$||x|| := \inf\{\rho > 0 : \sum_{k=1}^{\infty} M \left(\frac{|x_k|}{\rho} \right) \leq 1\}$$

The space l_M is closely related to the space l_p, which is an Orlicz sequence space with $M(x) = x^p$ for $1 \leq p < \infty$.

The \triangle_2 - condition is equivalent to

$$M(Lx) \leq KLM(x), \text{ for all values of } x \geq 0, \text{ and for } L > 1.$$

An Orlicz function M can always be represented in the following integral form

$$M(x) = \int_0^x \eta(t)dt,$$

where η is known as the kernel of M, is right differentiable for $t \geq 0$, $\eta(0) = 0$, $\eta(t) > 0$, η is non-decreasing and $\eta(t) \to \infty$ as $t \to \infty$. Note that an Orlicz function
satisfies the inequality

\[M(\lambda x) \leq \lambda M(x) \text{ for all } \lambda \text{ with } 0 < \lambda < 1. \]

Let \(E \) be a sequence space. Then \(E \) is called

(i) A sequence space \(E \) is said to be symmetric if \((x_n) \in E \) implies \((x_{\pi(n)}) \in E \), where \(\pi(n) \) is a permutation of the elements of the elements of \(\mathcal{N} \).

(ii) Solid (or normal), if \((\alpha_k x_k) \in E \), whenever \((x_k) \in E \) for all sequences of scalars \((\alpha_k) \) with \(|\alpha_k| \leq 1 \) for all \(k \in \mathcal{N} \).

\[\text{Lemma 1.1.} \quad \text{A sequence space } E \text{ is solid implies } E \text{ is monotone.} \]

Mursaleen [9] defined the sequence space

\[BV_\sigma = \left\{ x \in l_\infty : \sum_{n} |\phi_{m,n}(x)| < \infty, \text{ uniformly in } n \right\}, \]

where

\[\phi_{m,n}(x) = t_{m,n}(x) - t_{m-1,n}(x) \]

assuming that

\[t_{m,n}(x) = 0, \text{ for } m = -1. \]

A straightforward calculation shows that

\[\phi_{m,n}(x) = \begin{cases} \frac{1}{m(m+1)} \sum_{j=1}^{m} j(x_{\sigma^j(n)} - x_{\sigma^{j-1}(n)}) & (m \geq 1) \\ x_n, & (m = 0) \end{cases} \]

Note that for any sequence \(x, y \) and scalar \(\lambda \) we have

\[\phi_{m,n}(x + y) = \phi_{m,n}(x) + \phi_{m,n}(y) \text{ and } \phi_{m,n}(\lambda x) = \lambda \phi_{m,n}(x). \]
2. Main Results.

Let M be an Orlicz function, $p = (p_m)$ be any sequence of strictly positive real numbers and $r \geq 0$. Now we define the sequence space as follows:

$$BV_\sigma(M, p, r) = \left\{ x = (x_k) : \sum_{m=1}^{\infty} \frac{1}{m^r} \left[M \left(\frac{\phi_{m,n}(x)}{p} \right) \right]^{p_m} < \infty, \right. \left. \text{uniformly in } n \text{ and for some } \rho > 0 \right\}.$$

For $M(x) = x$ we get

$$BV_\sigma(p, r) = \left\{ x = (x_k) : \sum_{m=1}^{\infty} \frac{1}{m^r} |\phi_{m,n}(x)|^{p_m} < \infty, \text{ uniformly in } n \right\}.$$

For $p_m = 1$, for all m, we get

$$BV_\sigma(M, r) = \left\{ x = (x_k) : \sum_{m=1}^{\infty} \frac{1}{m^r} \left[M \left(\frac{\phi_{m,n}(x)}{p} \right) \right] < \infty, \right. \left. \text{uniformly in } n \text{ and for some } \rho > 0 \right\}.$$

For $r = 0$ we get

$$BV_\sigma(M, p) = \left\{ x = (x_k) : \sum_{m=1}^{\infty} \left[M \left(\frac{\phi_{m,n}(x)}{p} \right) \right]^{p_m} < \infty, \right. \left. \text{uniformly in } n \text{ and for some } \rho > 0 \right\}.$$

For $M(x) = x$ and $r = 0$ we get

$$BV_\sigma(p) = \left\{ x = (x_k) : \sum_{m=1}^{\infty} |\phi_{m,n}(x)|^{p_m} < \infty, \text{ uniformly in } n \right\}.$$

For $p_m = 1$, for all m and $r = 0$ we get

$$BV_\sigma(M) = \left\{ x = (x_k) : \sum_{m=1}^{\infty} \left[M \left(\frac{\phi_{m,n}(x)}{p} \right) \right] < \infty, \right. \left. \text{uniformly in } n \text{ and for some } \rho > 0 \right\}.$$

For $M(x) = x$, $p_m = 1$, for all m, and $r = 0$ we get

$$BV_\sigma = \left\{ x = (x_k) : \sum_{m=1}^{\infty} |\phi_{m,n}(x)| < \infty, \text{ uniformly in } n \right\}.$$

Theorem 2.1. The sequence space $BV_\sigma(M, p, r)$ is a linear space over the field \mathbb{C} of complex numbers.
Proof. Let \(x, y \in BV_\sigma(M, p, r) \) and \(\alpha, \beta \in \mathcal{C} \). Then there exist positive numbers \(\rho_1 \) and \(\rho_2 \) such that
\[
\sum_{m=1}^{\infty} \frac{1}{m^r} \left[M \left(\frac{\phi_{m,n}(x)}{\rho_1} \right) \right]^{p_m} < \infty
\]
and
\[
\sum_{m=1}^{\infty} \frac{1}{m^r} \left[M \left(\frac{\phi_{m,n}(y)}{\rho_2} \right) \right]^{p_m} < \infty, \text{ uniformly in } n.
\]
Define \(\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2) \). Since \(M \) is nondecreasing and convex we have
\[
\sum_{m=1}^{\infty} \frac{1}{m^r} \left[M \left(\frac{|\alpha \phi_{m,n}(x) + \beta \phi_{m,n}(y)|}{\rho_3} \right) \right]^{p_m}
\leq \sum_{m=1}^{\infty} \frac{1}{m^r} \left[M \left(\frac{|\alpha \phi_{m,n}(x)|}{\rho_3} \right) + M \left(\frac{|\beta \phi_{m,n}(y)|}{\rho_3} \right) \right]^{p_m}
\leq \sum_{m=1}^{\infty} \frac{1}{m^r} \frac{1}{2} \left[M \left(\frac{\phi_{m,n}(x)}{\rho_1} \right) + M \left(\frac{\phi_{m,n}(y)}{\rho_2} \right) \right] < \infty, \text{ uniformly in } n.
\]
This proves that \(BV_\sigma(M, p, r) \) is a linear space over the field \(\mathcal{C} \) of complex numbers. \(\square \)

Theorem 2.2. For any Orlicz function \(M \) and a bounded sequence \(p = (p_m) \) of strictly positive real numbers, \(BV_\sigma(M, p, r) \) is a paranormed (need not be total paranormed) space with
\[
g(x) = \inf_{n \geq 1} \left\{ \rho \in \mathbb{R}^+ : \left(\sum_{m=1}^{\infty} \frac{1}{m^r} \left[M \left(\frac{|\phi_{m,n}(x)|}{\rho} \right) \right]^{p_m} \right)^{\frac{1}{p}} \leq 1, \text{ uniformly in } n \right\}.
\]
where \(K = \max(1, \sup p_m) \).

Proof. It is clear that \(g(x) = g(-x) \). Since \(M(0) = 0 \), we get
\[
\inf \left\{ \rho \right\} = 0, \text{ for } x = 0.
\]
By using Theorem 1, for \(\alpha = \beta = 1 \), we get
\[
g(x + y) \leq g(x) + g(y).
\]
For the continuity of scalar multiplication let \(l \neq 0 \) be any complex number. Then by the definition we have
\[
g(lx) = \inf_{n \geq 1} \left\{ \rho \in \mathbb{R}^+ : \left(\sum_{m=1}^{\infty} \frac{1}{m^r} \left[M \left(\frac{|\phi_{m,n}(lx)|}{\rho} \right) \right]^{p_m} \right)^{\frac{1}{p}} \leq 1, \text{ uniformly in } n \right\}
\]
\[g(lx) = \inf_{n \geq 1} \left\{ (|l|s)_{\frac{n}{|l|}} : \left(\sum_{m=1}^{\infty} \frac{1}{m^r} \left[M \left(\frac{|\phi_{m,n}(lx)|}{s} \right) \right]^{p_m} \right)^{\frac{1}{p_m}} \leq 1, \right\} \]

where \(s = \frac{p}{|l|} \). Since \(|l|^{p_n} \leq \max(1, |l|^H) \), we have

\[
g(lx) \leq \max(1, |l|^H) \inf_{n \geq 1} \left\{ s_{\frac{n}{|l|}} : \left(\sum_{m=1}^{\infty} \frac{1}{m^r} \left[M \left(\frac{|\phi_{m,n}(x)|}{s} \right) \right]^{p_m} \right)^{\frac{1}{p_m}} \leq 1, \right\}
\]

\[
= \max(1, |l|^H) g(x)
\]

and therefore \(g(lx) \) converges to zero when \(g(x) \) converges to zero in \(BV_\sigma(M, p, r) \).

Now let \(x \) be a fixed element in \(BV_\sigma(M, p, r) \). There exists \(\rho > 0 \) such that

\[g(x) = \inf_{n \geq 1} \left\{ \rho_{\frac{n}{|l|}} : \left(\sum_{m=1}^{\infty} \frac{1}{m^r} \left[M \left(\frac{|\phi_{m,n}(x)|}{\rho} \right) \right]^{p_m} \right)^{\frac{1}{p_m}} \leq 1, \text{ uniformly in } n \right\}. \]

Now

\[g(lx) = \inf_{n \geq 1} \left\{ \rho_{\frac{n}{|l|}} : \left(\sum_{m=1}^{\infty} \frac{1}{m^r} \left[M \left(\frac{|\phi_{m,n}(lx)|}{\rho} \right) \right]^{p_m} \right)^{\frac{1}{p_m}} \leq 1, \text{ uniformly in } n \right\} \to 0, \]

as \(l \to 0 \).

This completes the proof.

Theorem 2.3. Suppose that \(0 < p_m \leq t_m < \infty \) for each \(m \in \mathbb{K} \) and \(r \geq 0 \). Then

(i) \(BV_\sigma(M, p) \subseteq BV_\sigma(M, t) \),

(ii) \(BV_\sigma(M) \subseteq BV_\sigma(M, r) \).

Proof. (i) Suppose that \(x \in BV_\sigma(M, p) \). This implies that

\[\left[M \left(\frac{|\phi_{i,n}(x)|}{\rho} \right) \right]^{p_m} \leq 1 \]

for sufficiently large values of \(i \), say \(i \geq m_0 \) for some fixed \(m_0 \in \mathbb{K} \). Since \(M \) is non-decreasing, we have

\[
\sum_{m=m_0}^{\infty} \left[M \left(\frac{|\phi_{i,n}(x)|}{\rho} \right) \right]^{t_m} \leq \sum_{m=m_0}^{\infty} \left[M \left(\frac{|\phi_{i,n}(x)|}{\rho} \right) \right]^{p_m} < \infty.
\]

Hence \(x \in BV_\sigma(M, t) \).

The proof of [ii] is trivial.

\[\square \]
The following result is a consequence of the above result.

Corollary 1. If \(0 < p_m \leq 1 \) for each \(m \), then \(BV_\sigma(M, p) \subseteq BV_\sigma(M) \).

If \(p_m \geq 1 \) for all \(m \), then \(BV_\sigma(M) \subseteq BV_\sigma(M, p) \).

Theorem 2.4. The sequence space \(BV_\sigma(M, p, r) \) is solid.

Proof. Let \(x \in BV_\sigma(M, p, r) \). This implies that

\[
\sum_{m=1}^{\infty} m^{-r} \left[M \left(\frac{|\phi_{k,n}(x)|}{p} \right) \right]^{p_m} < \infty.
\]

Let \((\alpha_m) \) be sequence of scalars such that \(|\alpha_m| \leq 1 \) for all \(m \in \mathbb{N} \). Then the result follows from the following inequality

\[
\sum_{m=1}^{\infty} m^{-r} \left[M \left(\frac{|\alpha_m \phi_{k,n}(x)|}{p} \right) \right]^{p_m} \leq \sum_{m=1}^{\infty} m^{-r} \left[M \left(\frac{|\phi_{k,n}(x)|}{p} \right) \right]^{p_m} < \infty.
\]

Hence \(\alpha x \in BV_\sigma(M, p, r) \) for all sequences of scalars \((\alpha_m) \) with \(|\alpha_m| \leq 1 \) for all \(m \in \mathbb{N} \) whenever \(x \in BV_\sigma(M, p, r) \).

From Theorem 4 and Lemma we have:

Corollary 2. The sequence space \(BV_\sigma(M, p, r) \) is monotone.

Theorem 2.5. Let \(M_1, M_2 \) be Orlicz functions satisfying \(\Delta_2 \) - condition and \(r, r_1, r_2 \geq 0 \). Then we have

(i) If \(r > 1 \) then \(BV_\sigma(M_1, p, r) \subseteq BV_\sigma(M_0 M_1, p, r) \),

(ii) \(BV_\sigma(M_1, p, r) \cap BV_\sigma(M_2, p, r) \subseteq BV_\sigma(M_1 + M_2, p, r) \),

(iii) If \(r_1 \leq r_2 \) then \(BV_\sigma(M, p, r_1) \subseteq BV_\sigma(M, p, r_2) \).

Proof. Since \(M \) is continuous at 0 from right, for \(\epsilon > 0 \) there exists \(0 < \delta < 1 \) such that \(0 \leq c \leq \delta \) implies \(M(c) < \epsilon \). If we define

\[
I_i = \left\{ m \in \mathbb{N} : M_1 \left(\frac{|\phi_{m,n}(x)|}{p} \right) \leq \delta \text{ for some } p > 0 \right\} ,
\]

where \(\phi_{m,n}(x) = \frac{\phi_{m,n}(x)}{p} \) and \(\phi_{m,n}(x) = \frac{\phi_{m,n}(x)}{p} \).
\[
I_2 = \left\{ m \in \mathcal{X} : M_1 \left(\frac{|\phi_{m,n}(x)|}{p} \right) > \delta \text{ for some } \rho > 0 \right\},
\]
then, when \(M_1 \left(\frac{|\phi_{m,n}(x)|}{p} \right) > \delta \) we get
\[
M \left(M_1 \left(\frac{|\phi_{m,n}(x)|}{p} \right) \right) \leq \{2M(1)/\delta\} M_1 \left(\frac{|\phi_{m,n}(x)|}{p} \right).
\]
Hence for \(x \in BV_\sigma(M_1, p, r) \) and \(r > 1 \)
\[
\sum_{m=1}^{\infty} m^{-r} \left[M_0 M_1 \left(\frac{|\phi_{m,n}(x)|}{p} \right) \right]^{p_m} = \sum_{m \in I_1} m^{-r} \left[M_0 M_1 \left(\frac{|\phi_{m,n}(x)|}{p} \right) \right]^{p_m}
+ \sum_{m \in I_2} m^{-r} \left[M_0 M_1 \left(\frac{|\phi_{m,n}(x)|}{p} \right) \right]^{p_m}
\leq \sum_{m \in I_1} m^{-r} \left[e^{p_m} \right]^{p_m}
+ \sum_{m \in I_2} m^{-r} \left[\{2M(1)/\delta\} M_1 \left(\frac{|\phi_{m,n}(x)|}{p} \right) \right]^{p_m}
\leq \max(e^h, e^H) \sum_{m=1}^{\infty} m^{-r}
+ \max \left(\{2M(1)/\delta\}^h, \{2M(1)/\delta\}^H \right)
\]
(where \(0 < h = \inf p_m \leq p_m \leq H = \sup p_m < \infty \)).

[ii] The proof follows from the following inequality
\[
m^{-r} \left[M_1 + M_2 \left(\frac{|\phi_{m,n}(x)|}{p} \right) \right]^{p_m} \leq C m^{-r} \left[M_1 \left(\frac{|\phi_{m,n}(x)|}{p} \right) \right]^{p_m}
+ C m^{-r} \left[M_2 \left(\frac{|\phi_{m,n}(x)|}{p} \right) \right]^{p_m}.
\]

[iii] The proof is straightforward.

\[\square\]

Corollary 3. Let \(\sigma \) be an Orlicz function satisfying \(\triangle_2 \) - condition. Then we have

1. If \(r > 1 \), then \(BV_\sigma(p, r) \subseteq BV_\sigma(M, p, r) \),
2. \(BV_\sigma(M, p) \subseteq BV_\sigma(M, p, r) \),
3. \(BV_\sigma(p) \subseteq BV_\sigma(p, r) \),
4. \(BV_\sigma(M) \subseteq BV_\sigma(M, r) \).

The proof is straightforward.
ÖZET: BV_{p} dizisi uzayı, Mursaleem tarafından tanımlanmış ve incelenmiştir [9]. Bu çalışmada BV_{p} uzayının, $BV_{p}(M, p, r)$ uzayına genişleterek bu uzaya ilişkin bazı özellikleri ve kapsama bağlamını elde ettik.

References

Current address: Department of Mathematics, A. M. U. Aligarh-202002 INDIA,
E-mail address: vakhan@math.com,