The Synthesis of Chiral Crown Ethers
1-Phenoxymethyl-3,6,9,12,15,18-hexaoxocyclooctadecane

by

Ç. ERK* AND H. HOŞGÖREN**

Faculté des Sciences de l'Université d'Ankara
Ankara, Turquie
La Revue "Communications de la Faculté des Sciences de l'Université d'Ankara" est un organe de publication englobant toutes les disciplines scientifiques représentées à la Faculté.

La Revue, jusqu'à 1975 à l'exception des tomes I, II, III, était composée de trois sérées:

Série A: Mathématique, Physique et Astronomie.
Série B: Chimie.
Série C: Sciences naturelles.

A partir de 1975 la Revue comprend sept sérées:

Série A₁: Mathématique
Série A₂: Physique
Série A₃: Astronomie
Série B: Chimie
Série C₁: Géologie
Série C₂: Botanique
Série C₃: Zoologie

En principe, la Revue est réservée aux mémoires originaux des membres de la Faculté. Elle accepte cependant, dans la mesure de la place disponible, les communications des auteurs étrangers. Les langues allemande, anglaise et française sont admises indifféremment. Les article devront être accompagnés d'un bref sommaire en langue turque.

The Synthesis of Chiral Crown Ethers
1-Phenoxyethyl-3,6,9,12,15,18-Hexaoxacyclooctadecane

Ç. ERK* AND H. HOŞGÖREN**
UNIVERSITY OF DIYARBAKR, DEPARTMENT OF CHEMISTRY
(Received 3 January 1980 and accepted 4 January 1980)

ABSTRACT
Starting from epoxides through their diglycols the synthesis of some derivatives of 18-Crown-6, such as 1-Phenoxyethyl- 3. 6. 9. 12. 15. 18-hexaoxacyclooctadecane were synthesised by williamson method and reported.

INTRODUCTION
Macro cyclic ethers exhibit very interesting and unusual ion binding properties. Their central hydrophilic cavities ringed with electropositive binding atoms and exterior flexible frame works exhibiting hydrophobic behavior. They show a perfect ability to bind a quite number cations they even undergo conformational changes during binding(1).

Their hydrophobic exteriors allow them to solublize ionic substance in nonaqueous solvents. Particularly the strong tendency shown by the macrocyclic ethers for alkaline and alkaline earth metal ions, their selective binding of these cations resulting in their use in many fields of chemistry(2,3).

Complexing of Crown Ethers is due to electrostatic attraction between the cation and the negative end of C-O dipoles. The stability of the polyether complexes depends primarily upon how well the cation fits into the polyether ring depending on the charge density of the cation and the solvating power of the medium in solution.

*Correspondence should be addressed, Diyarbakır Fen Fakültesi, Turkey
**Thesis submitted for Ms.Sc. in Chemistry, University of Diyarbakır
They have been first synthesised by Pedersen by the aid of Williamson synthesis, of dichlorides and cathecoles. Dale has tried diglycoles reacting with ditosylates of diglycols obtaining satisfactory yields (4). Green investigated the template effect and the solvent during the cyclization processes (5). Okahara Recently reportes the cyclization of monotosylates in the presence of KOH which improves the general methods (6).

Parsons first reported the synthesis of branched derivatives of 18-Crown-6 (7). Stoddart synthesized Similar derivatives starting from saccarides (8).

We now report the synthesis of phenoxyethyl-18-Crown-6 from 1,3-dichlor-2-propanol which was first converted to 1-(phenoxy)-2, 3-epoxypropane in 63% yield reacting with phenol in the presence of NaOH. Epoxide were tried to react with glycols in order to obtain higher oligomers we therefore allowed to react the 1-(phenoxy)-2, 3-epoxypropane with diethylene glycol and 1-(phenoxy)-4,7-dioxonan-2,9-diol obtained in 70% yield. Triethyleneglycol ditosylate was condensed with 1-(phenoxy)-4, 7-dioxonan-2,9-diol forming 1-phenoxyethyl-3, 6, 9, 12, 15, 18-hexaoxacyclooctadecane in more than 30% yields. However in order to obtain the phenoxyethyl derivative we synthesized the 1-phenoxyethyl-4-oxohexane-2, 6-ditoluensulphonate it was then reacted with tetraethyleneglycol in the presence of K^+ t-butoxide and it was observed that less then 30% cyclic product formed in such a reaction.
The general scheme of the reaction is given above to form the macrocyclic ether.

EXPERIMENTAL

1-(phenoxy)-2, 3-epoxypropane (I), was obtained according to Fairbourne. (9) so that 188 g phenol (2M) was allowed to heat at 70–80°C with 1,3-dichlor-2-propanol of 258 g (2M) in the presence of 593 g of 27 % NaOH-water solution organic layer of the reaction mixture was dried and purified through out the distillation. 190 g of product (63–65 % yield) at 120 / 13 mmHg.

1-phenoxy-4, 7-dioxananonan- 2,9- diol (II), 30 g (0,2M) 1-(phenoxy)-2,3- epoxypropane were reacted with 66 gr (0,62M) diethylene glycol at 160°C to 200°C for two hours and then at 200°C for 4 hours. Row product distilled at 180–200°C / 3 mm torr gave 14,6 g of pure compound of 28 % yield.

<table>
<thead>
<tr>
<th>Name</th>
<th>Formule</th>
<th>B.p. °C</th>
<th>m.p. °C</th>
<th>yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-(phenoxy)-2,3-epoxypropane</td>
<td>C₉H₁₈O₄</td>
<td>120°/13 mmHg</td>
<td>—</td>
<td>63</td>
</tr>
<tr>
<td>1-phenoxy-4, 7-dioxananonan-2,9-diol</td>
<td>C₉H₂₈O₂</td>
<td>180–200°/3mmHg</td>
<td>—</td>
<td>28</td>
</tr>
<tr>
<td>1-chlor-4-oxohexane-2,6-diol</td>
<td>C₂₀H₃₂O₂Cl</td>
<td>120–116°/1mmHg</td>
<td>—</td>
<td>55</td>
</tr>
<tr>
<td>1-chlor-4,7-dioxananonan-2,9-diol</td>
<td>C₂₆H₃₈O₂Cl</td>
<td>130–140°/1mmHg</td>
<td>—</td>
<td>50</td>
</tr>
<tr>
<td>1-chlor-4-oxohexane-2,6-dio- luensulphonate</td>
<td>C₁₉H₂₃O₄Cl₂S₂</td>
<td>oil</td>
<td>—</td>
<td>70</td>
</tr>
<tr>
<td>1-phenoxy methyl-3, 6, 9, 12, 15, 18-hexaoxacyclo octadecane</td>
<td>C₁₉₆H₃₉O₁₂</td>
<td>oil</td>
<td>—</td>
<td>30</td>
</tr>
</tbody>
</table>

1-chlor-4-oxohexane-2, 6-diol(III) was obtained by Kharasch's method... 278 gr (3,0M) epichlorhydrin and 379 g (6,0M) 1,2-ethanediol were placed in 2 l round bottomed flask which was mounted in a fume cubroad. While the mixture was cooled and mixed regularly 10 ml of concc. H₂SO₄ was added dropwise (Caution). After heating the mixture 12 hours on a steam bath it was treated with 38 gr BaCO₃ than filtered. Distillation at 110–120°C / 1 mmHg gave the product of 55 % yield.

1-chlor-4,7-dioxananonan-2,9-diol (IV) was obtained according to the method given above. So 92,6 g (1M) epichlorhydrin and 212
(2M) diethylene glycol were reacted in the presence of 4.33 ml ml H₂SO₄ (8.5 mM) during 12 hours. Row product distilled after neutralisation.

1-chlor-4-oxohexane-2,6-ditoluensulphonate (V), 15.5 g (0.1M) of 1-chlor-4-oxohexane-2,6-diol and 80 ml of pyridine were placed into the 250 ml flask. The cooled mixture was then reacted with 38.5 g (0.2 M) toluene sulphochloride with in the three hours, row product was extracted by CHCl₃, and dried, then purified on Al₂O₃ column before use.

Figure-I. 20MHz ¹³C spectrum of 1-phenoxymethyl-3, 6, 9, 12, 15, 18-hexaoxocyclooctadecane in CDCl₃ reference to TMS.

1-(phenoxymethyl)-3,6,9,12,15,18-hexaoxocyclooctadecane (VI), 259 gr (0.07 M) potassium was dissolved in a 250 ml THF solution of 6.75 ml t-buthanol. The mixed solution of 9.21 g (0.036 M) 1-phenoxy-4,7-dioxanonan-2,9-diol and 26.4 g (0.036 M)
triethylenglycolditosylate was added to the potassium butoxide solution gradually during the boiling. Reaction mixture was then refluxed for 24 hours and filtered. Evaporated solution gave an oily mixture which was then refluxed for 24 hours and filtered. Evaporated solution gave an oily product which was then purified on acidic Al$_2$O$_3$. Hygrousicopic material was obtained 4.0 gr of 30 % yield.

ACKNOWLEDGEMENT

Spectrums were obtained by Analytical Chemistry Department of Ankara University with a Varian T60-A model spectrometer. 20 MHz 13C-spectrum was obtained by Research Institute of Organic Chemistry of Ankara University with a Varian CFT-20 model spectrometer therefore greatly acknowledged.

REFERENCES

ÖZET

Bazı asimetrik yapılı 18-Crown-6 sentezlerinin yapılması maksadı ile asimetrik glikoller elde edilmiş ve bunlar glikollerin ditoluene sulfonat türevleri ile etkileşirilmişlerdir. Bu yoldan 1- (fenoksimetil) - 3, 6, 9, 12, 15, 18- heksaoksasikloktadekan'ın sentesi yapılmıştır.
Prix de l'abonnement annuel

Turquie : 15 TL; Étranger : 30 TL.
Prix de ce numéro : 5 TL (pour la vente en Turquie).
Prière de s'adresser pour l'abonnement à : Fen Fakültesi
Dekanlığı Ankara, Turquie.