Reaction of Enamines With Aldehydes

by

W.I. AWAD, N.G. KANDILE and T.M. Abd ELLATIF

Faculté des Sciences de l'Université d'Ankara
Ankara, Turquie
La Revue "Communications de la Faculté des Sciences de l'Université d'Ankara" est un organe de publication englobant toutes les disciplines scientifique représentées à la Faculté des Sciences de l'Université d'Ankara.

La Revue, jusqu'à 1975 à l'exception des tomes I, II, III était composé de trois séries

Série A: Mathématiques, Physique et Astronomie,
Série B: Chimie,
Série C: Sciences Naturelles.

A partir de 1975 la Revue comprend sept séries:

Série A₁: Mathématiques,
Série A₂: Physique,
Série A₃: Astronomie,
Série B: Chimie,
Série C₁: Géologie,
Série C₂: Botanique,
Série C₃: Zoologie.

A partir de 1983 les séries de C₂ Botanique et C₃ Zoologie ont été réunies sous la seule série Biologie C et les numéros de Tome commencerons par le numéro 1.

En principe, la Revue est réservée aux mémoires originaux des membres de la Faculté des Sciences de l'Université d'Ankara. Elle accepte cependant, dans la mesure de la place disponible les communications des auteurs étrangers. Les langues Allemande, Anglaise et Française seront acceptées indifféremment. Tout article doit être accompagnés d'un résumé.

Les articles soumis pour publications doivent être remis en trois exemplaires dactylographiés et ne pas dépasser 25 pages des Communications, les dessins et figures portes sur les feuilles séparées devant pouvoir être reproduits sans modifications.

Les auteurs reçoivent 25 extraits sans couverture.
Reaction of Enamines With Aldehydes

W.I. AWAD, N.G. KANDILE and T.M. Abd ELLATIF

Chemistry Department, College for Women, Ain Shams University, Heliopolis

(Received January 18, 1983, accepted March 7, 1983)

ABSTRACT

In continuation to our previous work on enamines\(^1\), the present investigation deals with the action of morpholinocyclopentene, morpholinocyclohexene, piperidinocyclopentene and piperidinocyclohexene on aldehydes.

Piperidinocyclohexene reacts with m-nitrobenzaldehyde at room temperature to give (1:1) addition product (I). This type of addition is similar to the addition of chlorohydrate to enamines\(^2\). The structure of (I) is inferred from: i) analytical data, ii) Its infrared and U.V. spectra (cf. exp. part).

\[
\begin{align*}
\text{\ce{N}} & \text{\ce{\rightarrow}} & \text{\ce{N}} \\
\text{\ce{\rightarrow}} & & \text{\ce{\rightarrow}} \\
\text{\ce{\rightarrow}} & & \text{\ce{\rightarrow}} \\
\end{align*}
\]

Acid hydrolysis\(^3\) of (I) yields the product (II), its i.r. spectrum shows \(\nu_{\text{C=O}}\) of alicyclic ketones and \(\nu_{\text{C=O}}\) stretching frequencies.
However, the interaction between piperidinocyclopentene, morpholinocyclopentene and morpholinocyclohexene with m-nitrobenzaldehyde under the same conditions proceeds in a different way and no (1:1) addition product is isolated.

Morpholinocyclohexene and morpholinocyclopentene react with m-nitrobenzaldehyde to give (III) as the main product and an oily product in very poor yield.

The structure of (III) is inferred, other than analytical data, from a study of their infrared and its identity by melting point and mixed melting point with an authentic specimen prepared from direct interaction between m-nitrobenzaldehyde and morpholine.

The oily product shows the following characteristics: (i) It contains nitrogen ii) Its i.r. spectrum shows $\nu_{C=O}$ and $\nu_{C=N}$.

Under similar conditions m-nitrobenzaldehyde reacts with piperidinocyclopentene to give (IV) as the only isolated product.
The structure of (IV) is inferred from (i) Analytical data ii) Its infrared spectrum does not show any absorption in the region characteristic of (OH), it also shows the carbonyl stretching frequencies at 1690 cm\(^{-1}\) and \(\nu\text{-C} = \text{C}<\) at 1630 cm\(^{-1}\). It seems that these enamines decompose under the condition of the reaction.

p-Nitrobenzaldehyde reacts with morpholinocyclopentene under the same conditions to give \(\alpha, \alpha\)- (N) - dimorpholin -p-nitrotoluene (V) as the main product and (VI) in very poor yield.

The structure of (V) is inferred, other than analytical data, from its i.r. spectrum, and its identity by melting point and mixed melting point with an authentic specimen\(^4\). Acid hydrolysis of (V) yields p-nitrobenzaldehyde.

The structure of (VI) is inferred from: i) analytical data. ii) Its i.r. spectrum shows \(\nu\text{C}=\text{O}\) at 1690 cm\(^{-1}\) and \(\nu\text{-C} = \text{C}<\) at 1625 cm\(^{-1}\) and from a study of its U.V. spectrum However, p-nitrobenzaldehyde reacts with morpholinocyclohexene under similar conditions to give (V) as the main product and an oily product in very poor yield which gives the following characteristics: i) It contains nitrogen ii) Its i.r. spectrum shows strong band in the region characteristic of \(\nu\text{C}=\text{O}\) group and a strong band at 3400 cm\(^{-1}\) characteristic to \(\nu\text{OH}\) group.

Piperidinocyclohexene under similar conditions reacts with p-nitrobenzaldehyde to give (VII) as the only isolated product. The structu-
re of (VII) is referred from: i) Analytical data ii) Its i.r. spectrum shows \(\nu_{\text{OH}} \) at 3440 cm\(^{-1}\) and \(\nu_{\text{C=C}} \) at 1670 cm\(^{-1}\). iii) From a study of its U.V. spectrum (cf. exp. part).

\[
\begin{align*}
\text{O}_2\text{N} & \quad \text{H} \\
\text{C=O} + & \quad \overset{\text{H}}{\text{N}} & \rightarrow & \quad \text{O}_2\text{N} & \quad \text{H} \quad \text{C} \\
\text{H} & \quad \text{OH} & \quad \text{C} & \quad \text{OH} & \quad \text{C} & \quad \text{C} & \quad \text{OH}
\end{align*}
\]

(VII)

p-Nitrobenzaldehyde reacts with piperidinocyclopentene to give (VI) as the only isolated product. The structure of (VI) is inferred from (i) Analytical data ii) A study of its i.r. and U.V. spectra (cf. exp. part)

\[
\begin{align*}
\text{O}_2\text{N} & \quad \text{H} \\
\text{C=O} + & \quad \overset{\text{N}}{\text{O}} & \rightarrow & \quad \text{O}_2\text{N} & \quad \text{C} \\
\text{H} & \quad \text{C} & \quad \text{OH} & \quad \text{C} & \quad \text{C} & \quad \text{OH} & \quad \text{C}
\end{align*}
\]

(VI)

p-Nitrobenzaldehyde reacts with piperidinocyclopentene under the same conditions but in presence of water drops to yield the same product (VI) and not (VIII).

\[
\begin{align*}
\text{O}_2\text{N} & \quad \text{C} \\
\text{H} & \quad \text{C} \\
\text{OH} & \quad \text{OH}
\end{align*}
\]

(VIII)

p-Chlorobenzaldehyde reacts with morpholinocyclopentene at room temperature to give \(\alpha, \alpha^\prime \)- (N)- dimorpholino -p- chlorotoluene (IX) as the only isolated product.

The structure of (IX) is inferred from:

i) Analytical date ii) Study of its i.r. iii) Its identity by melting point and mixed melting point with an authentic specimen.\(^4\)
Finally, o-chlorobenzaldehyde reacts with morpholinocyclopentene at room temperature to give (X) as the only isolated product in good yield. The structure of (X) is inferred from:

i) Analytical data ii) A study of its i.r. and U.V. spectra iii) Its identity by melting point and mixed melting point with authentic specimen which prepared from the direct interaction between morpholine and o-chlorobenzaldehyde.

Experimental

All melting points are not corrected. Analysis were carried out in the Research Microanalytical Laboratory of Cairo University. I.r. spectra were measured on Perkin-Elmer 398 using KBr Wafer technique. Electronic spectra were carried out on Perkin-Elmer 555 U.V. Vis Spectrophotometer.

Reaction between Aldehydes and Enamines:

A mixture of enamine (0.02 mole) and aldehyde (0.01 mole) in (50 ml) benzene was left overnight in refrigerator. The reaction mixture was concentrated at room temperature. The oily product obtained was dissolved in methanol. The solid product separated was filtered off and crystallised from the suitable solvent [cf. Table (1)].
<table>
<thead>
<tr>
<th>Aldehyde</th>
<th>Enamine</th>
<th>Product No.</th>
<th>Solvent of crystallization</th>
<th>m.p. °C</th>
<th>yield %</th>
<th>Analysis</th>
<th>i.r.</th>
<th>u.v.</th>
</tr>
</thead>
</table>
| m-Nitrobenzaldehyde | piperidino cyclohexene | (I)* | Benzene/Pet ether 40-60°C | 190 | 85 | C_H₄N₂O₂
Caled C, 68.35
H, 7.59 N, 8.8
Found C, 68.30
H, 7.70 N, 8.43 | ν C=O at 1660 cm⁻¹
ν OH at 3440 cm⁻¹ | λ_{max} = 232 nm ² max 18 x 10³ |
| | morpholino-cyclohexene | (II)_B | oil | 15 | C_H₄N₂O₂
Caled C, 58.63
H, 6.84 N, 13.6
Found C, 58.60
H, 7.20 N, 13.9 | ν C=O at 1708 cm⁻¹
ν C=O at 1638 cm⁻¹
ν OH at 3400 cm⁻¹ | λ_{max} = 267 nm ² max 11.3 x 10³ |
| | piperidino | (IV) | Benzene | 215 | 85 | C_H₄N₂O₂
Caled C, 66.3
H, 5.06 N, 6.45
Found C, 65.9
H, 4.79 N, 6.80 | ν C=O at 1690 cm⁻¹
νC=C at 1630 cm⁻¹
ν C=O at 270 nm ² max 14.3 x 10³ | λ_{max} = 322.5 nm ² max 224 x 10³ |
| benzaldehyde | cyclopentene | (V)_{***} | pet-ether (100-120°C) | 188 | 80 | C_H₄N₂O₂
Caled C, 58.63
H, 6.84 N, 13.6
Found C, 59.09
H, 6.90 N, 12.99 | νC=C at 1660 cm⁻¹
ν C=O at 355 nm ² max 20.9 x 10³ | λ_{max} = 220 nm ² max 17.1 x 10³ |
| benzaldehyde | morpholino- | (VI) | Benzene/pet ether 40-60°C | 190 | 15 | C_H₄N₂O₂
Caled C, 66.3
H, 5.06 N, 6.45
Found C, 66.8
H, 5.10 N, 6.60 | ν C=O at 1660 cm⁻¹
ν C=O at 1622 cm⁻¹
ν C=O at 1705 cm⁻¹
ν OH at 3400 cm⁻¹ | λ_{max} = 220 nm ² max 10.9 x 10³ |
| benzaldehyde | morpholino- | (V)_{****} | pet-ether (100-120°C) | 188 | 80 | C_H₄N₂O₂
Caled C, 58.63
H, 6.84 N, 13.6
Found C, 59.20
H, 7.20 N, 13.3 | ν C=O at 1660 cm⁻¹
ν C=O at 1622 cm⁻¹
ν C=O at 1705 cm⁻¹
ν OH at 3400 cm⁻¹ | λ_{max} = 220 nm ² max 10.9 x 10³ |
<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Reaction</th>
<th>R</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7°</td>
<td>Piperidino cyclohexene</td>
<td>Benzene/pet. ether 40-60°C</td>
<td>145</td>
<td>R</td>
<td></td>
<td>70</td>
<td>C_{15}H_{14}NO</td>
<td>γC=O at 1670 cm⁻¹</td>
<td>λ max 340 nm max 17.5 x 10^3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7°</td>
<td>Piperidino cyclopentene</td>
<td>Benzene/pet. ether 40-60°C</td>
<td>190</td>
<td>R</td>
<td></td>
<td>80</td>
<td>C_{14}H_{13}NO</td>
<td>γOH at 3420 cm⁻¹</td>
<td>λ max 220 nm max 17.3 x 10^3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p-Chloro-benzaldehyde</td>
<td>pet-ether (40-60°C)</td>
<td>130</td>
<td>R</td>
<td></td>
<td>60</td>
<td>C_{15}H_{14}NOCl</td>
<td>γC=O at 1690 cm⁻¹</td>
<td>λ max 355 nm max 20.9 x 10^3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Morpholino-cyclopentene</td>
<td>pet-ether (40-60°C)</td>
<td>88-90</td>
<td>R</td>
<td></td>
<td>60</td>
<td>C_{15}H_{14}NOCl</td>
<td>γC=O at 1622 cm⁻¹</td>
<td>λ max 220 nm max 10.9 x 10^3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o-Chloro-benzaldehyde</td>
<td>pet-ether (40-60°C)</td>
<td>88-90</td>
<td>R</td>
<td></td>
<td>60</td>
<td>C_{15}H_{14}NOCl</td>
<td>γC=O, γC=O or γOH</td>
<td>max 220 nm max 5.8 x 10^3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Concentration of the reaction mixture at room temperature gives yellow solid.
** (III)ₐ is the solid product and concentration of the filtrate gives oil (III)ₐ
*** (V) is the solid product and concentration of the filtrate gives VI)
**** (V) is the solid product and concentration of the filtrate gives oil.
Acid hydrolysis of (I):

Add to (0.5 gm) of (I) a slight excess of cold dilute hydrochloric acid. Hydrolysis was completed within a few minutes. Extraction with ether, then dry over anhydrous sodium sulphate, filtered off, evaporate under reduced pressure a greenish yellow solid formed, which crystallised from benzene-pet. ether (40-60 °C) to give (II) as greenish yellow crystals m.p. 195 °C, yield 50 %.

C_{13}H_{15}NO_4 Calcd. C, 63.15 H, 5.20

Found C, 62.90 H, 5.40

Its i.r. spectrum shows ν_{C=O} at 1715 cm\(^{-1}\) characteristic of alicyclic ketones and ν_{C=O} at 1665 cm\(^{-1}\).

Reaction between aldehydes and secondary amines:

A mixture of (0.02 mole) amine and (0.01 mole) aldehyde was left overnight in (50 ml) benzene. The reaction mixture was concentrated at room temperature, the solid product was crystallised from the suitable solvent [cf. Table (2)].

<table>
<thead>
<tr>
<th>Aldehyde</th>
<th>Amine</th>
<th>Product No.</th>
<th>m.p. °C</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>m-Nitrobenzaldehyde</td>
<td>Morpholine</td>
<td>(III)</td>
<td>130.1</td>
<td>80</td>
</tr>
<tr>
<td>p-Nitrobenzaldehyde</td>
<td>Morpholine</td>
<td>(V)</td>
<td>188</td>
<td>85</td>
</tr>
<tr>
<td>o-Chlorobenzaldehyde</td>
<td>Morpholine</td>
<td>(X)</td>
<td>88-90</td>
<td>85</td>
</tr>
</tbody>
</table>

REFERENCES