Reaction Of Methyl Red And Methyl Orange
With Mercuric Salts

by

M.F. El-SHAHAT*, E.A. El-SAWI and H.A. HASSAN

Faculté des Sciences de l'Université d'Ankara
Ankara, Turquie
Communications de la Faculté des Sciences
de l’Université d’Ankara

Comité de Redaction de la Série B
C. Tüzün – T. Gündüz – N. Renda
Secrétaire de Publication
Ö. Çakar

La Revue “Communications de la Faculté des Sciences de
l’Université d’Ankara” est un organe de publication englobant
toutes les disciplines scientifique représentées à la Faculté des
Sciences de l’Université d’Ankara.

La Revue, jusqu’à 1975 à l’exception des tomes I, II, III était
composé de trois séries

Série A : Mathématiques, Physique et Astronomie,
Série B : Chimie,
Série C : Sciences Naturelles.

A partir de 1975 la Revue comprend sept séries:
Série A₁ : Mathématiques,
Série A₂ : Physique,
Série A₃ : Astronomie,
Série B : Chimie,
Série C₁ : Géologie,
Série C₂ : Botanique,
Série C₃ : Zoologie.

A partir de 1983 les séries de C₂ Botanique et C₃ Zoologie
ont été réunies sous la seule série Biologie C et les numéros
de Tome commencent par le numéro 1.

En principe, la Revue est réservée aux mémoires originaux
des membres de la Faculté des Sciences de l’Université d’Ankara.
Elle accepte cependant, dans la mesure de la place disponible
les communications des auteurs étrangers. Les langues Allemande,
Anglaise et Française seront acceptées indifféremment. Tout ar-
ticle doit être accompagnés d’un resume.

Les articles soumis pour publications doivent être remis en
trois exemplaires dactylographiés et ne pas dépasser 25 pages des
Communications, les dessins et figures portes sur les feuilles sé-
parées devant pouvoir être reproduits sans modifications.

Les auteurs reçoivent 25 extraits sans couverture.

l’Adresse : Dergi Yayın Sekreteri.
Ankara : Üniversitesi,
Fen Fakültesi,
Beşevler-Ankara
TURQUIE
Reaction Of Methyl Red And Methyl Orange
With Mercuric Salts

By

M.F. El-SHAHAT*, A.E. EL-SAWI and H.A.HASSAN

Chemistry Department, Faculty of Science and University College for Women,
(Received January 11, 1983; accepted March 7, 1983)

SUMMARY

The mercuration of methyl red and methyl orange with mercuric acetate, mercuric chloride, mercuric oxide, and mercuric iodide gave different mercurated products. Mercuration was found to occur predominantly in the orthoposition. The structure of these compounds were confirmed by IR, NMR, Mass spectra and micro chemical analysis. The regiospecificity of these reactions suggest that the mercury atom is directed into an ortho position by the coordination to the azo nitrogen.

INTRODUCTION

Methyl red and methyl orange (substituted azobenzene) have been used in analytical chemistry as acid-base indicators. The introduction of mercury atom may affect their properties.

Many publications have been described the direct metallations of azobenzene2-6. In all cases metallation occurs in the ortho position, presumably by coordination of the metal to an azonitrogen and subsequent substution.2 There have been two indirect ortho-reactions of azobenzene reported in literature.5,6 The mercurials react readily with halogens to produce haloazobenzenes, and these can be converted to numerous other derivatives.7 Recently, a direct mercuration of azo benzene and the effect of various other substituents on this mercuration reaction was discussed.8

* To whom all correspondances should be addressed: Dr. M.F. El-Shahat, Chemistry Dept. Faculty of Science, Ain Shams University, Abbassia. Cairo, Egypt.
The present work deals with the mercuriation of methyl red and methyl orange (ortho-and para substituted azobenzene) with different mercurating agents, mercuric acetate, chloride, oxide, and iodide. The method of preparation is by fusion of the reaction mixture. All mercurated compounds were determined to be pure by thin layer chromatography, melting point, and elemental chemical analysis.

EXPERIMENTAL

All NMR spectra were recorded on a varian T-60 spectrometer in CDCl$_3$ solutions with TMS as the internal standart, UV spectra were recorded on a Beckman, Acta MVII spectrophotometer in methanol. All IR spectra were recorded on a Beckman IR 4240 spectrophotometer. The mass spectra were determined on a Varian MATSM IB with data system SS 100 mass spectrometer operating at 70 ev, mass resolution approximately 1000 and ion source temperature of 190°C. The direct inlet system was used, the sample temperature is 45°C. Two mass spectra were carried out, one with correct peak height ratios and the other was registered at higher sensitivity to show small peaks. Melting points were taken on a melting temperature apparatus and are uncorrected. Microanalyses were carried out by the Micro Analytical Centre, Cairo University and Analytische Laboratorien vorm. Alfred Bernhardt West Germany.

Mercuration of methyl red

In a round bottomed flask equipped with a reflux condenser surrounded with calcium chloride drying tube, mercuric salt (0.1 mole) was gradually added with stirring to (0.1 mole) methyl red. This was heated gradually on hot plate until the mixture melted. The reaction mixture was allowed to cool to room temperature and then the unreacted material (methyl red) was extracted with methanol at room temperature when the methyl alcohol was evaporated to one third its original volume. It gave the same m.p., mixed m.p. and the infrared spectra of methyl red. The insoluble part in methyl alcohol was crystallized from toluene-petroleum ether 40-60°C.

4-N, N-dimethyl amino, 3-hydroxy mercuri, 6'-hydroxy mercuricarboxylate azo benzene. (methyl red dimercuri-hydroxide) It was
crystallized from toluene-petroleum ether 40-60°C to give deep violet needles, 48% yield, m.p. 188-189°C.

Analysis: Found: % C 26.00; % H 2.4; % Hg 56.91
C_{15}H_{15}N_3O_4Hg_2 calcld.: % C 25.63; % H 2.14; % Hg 57.13

3- acetoxymercuri, 4-N, N- dimethylamino ,6- acetoxymercuri-carboxylate azobenzene. (methyl red dimercuri-acetete). It was prepared by the previous method using (0.1 mole) methyl red and (0.2 mole) mercuric acetate. It was recrystallized from toluene-petroleum ether 40-60°C to give red crystalline product, 90% yield, m.p. 171-172°C.
Analysis: Found : % C 32.3; % H 2.8; % N 5.09; % Hg 48.01
C_{19}H_{19}N_3O_6Hg_2· ½ C_7H_8 Calcd; % C 32.44; % H 2.76; % N 5.05; % Hg 48.26

4 -N, N-Dimethylamino, 5- hydroxymercuri, 2-mercuri-2-carboxylate, azobenzene. It was prepared by the reaction of (0.1 mole) methyl red with (0.1 mole) mercuric iodide. The product recrystallized from toluene-petroleum ether 40-60°C to give a deep violet crystals, 42% yield, m.p. 195-196°C.
Analysis: Found : % C 26.00; % H 2.03; % N 5.91; % Hg 58.56
C_{15}H_{14}N_3O_3Hg_2 Calcd : % C 26.2; % H 2.04; % N 6.12; % Hg 58.55

The reaction of (0.1 mole methyl red with (0.1 mole) mercuric chloride gave rise to unidentified product, recrystallised from toluene-petroleum ether to give violet needles, m.p. 169-170°C.
Analysis: Found: % C 61.20; % H 5.0; % N 12.4; % Hg 26.55

However (0.1 mole) methyl red reacted with (0.1 mole) mercuric oxide to give also uncharacterized product. Recrystallization from toluene-petroleum ether gave violet crystals; m.p. 174-175°C.
Analysis: Found: % C 63.9; % H 5.3; % Hg 25.29

Mercuration of methyl orange

Reaction of methyl orange with mercuric salts took place as in the previous experiments. The insoluble product in methanol was treated with acetic acid and then boiled for 10 minutes followed by filtration. Some products crystallised from acetic acid and the other insolub-
le in it even in other solvents of crystallization. Reaction of methyl orange (0.1 mole) with (0.1 mole) mercuric acetate gave rise to two products which were separated by crystallisation from acetic acid.

4- N, N-Dimethyl amino, 4′ sulphonic, 6′ hydroxymercuri, azobenzene. Recrystallized from acetic acid to give deep red crystals, 46 % yield, m.p. 260°C (Decomposed).

Analysis: Found % C 33.1; % H 2.54; % N 7.74; % Hg 38.19
C₁₄H₁₅N₃O₄SHg Caled. : % C 32.2; % H 2.87; % N 8.05; % Hg 38.45

3- Acetoxymercuri, 4-N, N-dimethylamino, 4- sulphonic, 6- hydroxymercuri, azobenzene. It was the insoluble part in acetic acid. Trials for crystallisation were unsuccessful. But it gave one spot with TLC. The brownish red crystals, 35 % yield, m.p. 250°C (Decompose).

Analysis: Found : % C 24.0; % H 2.1; % Hg 51.09
C₁₆H₁₇N₃SHg₂ Caled. : % C 24.6; % H 2.1; % Hg 51.42.

3- Hydroxymercuri, 4- N, N- dimethylamino, oxo 6, 6′-bis- mercuri, azobenzene. Methyl orange (0.1 mole) reacted with (0.2 mole) mercuric acetate gave rise to one product. Trials for crystallization of this compound were unsuccessful. The brown crystals, 30 % yield. m.p. 308°C (Dec).

Analysis: Found : % C 18.62; % H 1.26; % N 3.88; % S 3.04;
 % Hg 61.81
C₁₆H₁₅N₃O₆SHg₃ Caled. : % C 19.61; % 1.50 % N 4.29; % S 3.26;
 % Hg 61.48

Mercuration of (0.1 mole) methyl orange with (0.1 mole) mercuric chloride gave rise to two products; seperated by fractional crystallization from acetic acid.

4- N, N-Dimethylamino, 2′- chloromercuri, 4′- sulphonic, azobenzene hydrochloride. Recrystallized from acetic acid to give brown crystals, 40 % yield, m.p. 260°C (Dec.).

Analysis: Found : % C 27.7; % H 2.8; % N 6.8; % S 5.7; % Hg
 % 34.71
C₁₄H₁₅N₃O₃SHgCl₂Caled.: % C 29.1; % H 2.6; % N 7.2; % S 5.55;
 % Hg 34.4
Mercuri, bis- (methyl orange), mono-mercuri-chloride. Trials for crystallization had failed. The reddish-violet crystals, 30 % yield, m.p. 230°C (Dec.).

Analysis: Found : % C 34.8; % H 3.1; % N 9.5; % S 6.6;
 % Cl 4.7; Hg 42.16

C_{28}H_{27}N_{6}O_{3}S_{2}Hg_{2}Cl Caled: % C 35.4; % H 2.95; % N 8.85; % S 6.7;
 % Cl 13.8; Hg 42.28

RESULTS AND DISCUSSION

Mercuric acetate (0.1 mole) reacted with (0.1 mole) methyl red to give compound (1). The mechanism of the reaction is as follows:
The structure was confirmed by elemental chemical analysis, IR, NMR, UV, and mass spectroscopy. The bands due to isolated hydrogen, two adjacent and four adjacent hydrogen in the aromatic rings at 900-700 cm\(^{-1}\) had appeared in the infrared spectra. The bands at 3400, 2810, and 1525 were attributed to the -OH, -N- (CH\(_3\))\(_2\) and N=N respectively.

The NMR spectra showed signals for aromatic protons at 8 7.3 ppm. It revealed also signals at 8 3.2, 0.6 ppm due to -N- CH\(_3\) and -OH protons. The UV K-band shifts helped to further confirm the assignment of the structure to this product. The K-band absorption shifted to longer wavelengths, and this was due to coordination of the mercury with an azo nitrogen.\(^8\) It was noticed that the absorption maxima due \(\pi\rightarrow\pi^*\) for methyl red is 412.5 nm, while \(\pi\rightarrow\pi^*\) transition for compound (I) showed shifted absorption at 450 nm and appeared as a shoulder. The shoulder at 500 nm for methyl red became intense peak at 487 nm. This indicated that the coordination of mercury with an azo nitrogen had an effect on the energy of excitation of n→\(\pi^*\), i.e. it increased the energy of excitation required for n→\(\pi^*\) and so shifted to shorter wavelength. The mass spectra of compound (I) was reported. The most significant fragmentation arise from cleavage of any one of the two bonds attached to the azo group N=N followed by further fragmentations as shown in the scheme:
The base peak of this spectrum at m/e 92 (100%) was due to $\begin{align*}
\text{C}^\circ\text{O} & \\
\text{N}^\text{=N} \quad \text{N(CH}_3\text{)}_2
\end{align*}$, and $\begin{align*}
\text{N}^\text{=N} \quad \text{N(CH}_3\text{)}_2
\end{align*}$ These fragments were obtained via fragmentation of the cations (Ia) and (Ib) as shown:

$$
\begin{align*}
\text{N}^\text{=N} \quad \text{N(CH}_3\text{)}_2 & \xrightarrow{\text{HgOH}} \text{HN=NN} \quad \text{N(CH}_3\text{)}_2 & \xrightarrow{-\text{HC=NC(CH}_3\text{)}_2} \\
\text{m/e 365 (1\%)} & \quad \text{m/e 148}
\end{align*}
$$

$$
\begin{align*}
\text{N}^\text{=N} \quad \text{N(CH}_3\text{)}_2 & \xrightarrow{-\text{N}_2} \text{C}_5\text{H}_5^+ & \xrightarrow{-\text{C}_2\text{H}_2} \text{C}_3\text{H}_3^+ & \rightarrow \text{C}_3^-
\end{align*}
$$

m/e 92 (100%) m/e 65 (31%) m/e 39 (26%) m/e 36 (31%)

However, cation (Ib) fragmented as follows:

$$
\begin{align*}
\text{m/e 366 (1\%)} & \xrightarrow{-\text{HgO}} \text{m/e 149 (1\%)} & \xrightarrow{-\text{N}_2} \text{m/e 121 (1\%)} & \xrightarrow{-\text{OH}} \\
\text{m/e 92(100\%)} & \xrightarrow{-\text{CO}} \text{m/e 77 (5\%)} & \xrightarrow{-\text{C}_2\text{H}_2} \text{m/e 51 (15\%)}
\end{align*}
$$

The intense peak at m/e 202 (92%) and m/e 271 (90%) were due to mercurous ion and HO-Hg -C $\equiv\text{C}^\text{=N-CH}_3$ cation respectively. The latter cation obtained due to the fragmentation of (Ic).
The peaks at m/e 237 (15%) and m/e 316 (7%) were due to C₃Hg⁻ and \(\text{O} = \text{C} - \text{O} \text{HgOAc} \). The former may be due to the combination of mercury ion with the negative fragment C⁻₃⁹ and the latter may be also due to the combination of mercury ion with the cation \(\text{C}_6\text{H}_5^+ \) and \(\text{C}_3\text{H}_5^+ \) which were produced via previous fragmentation of cations (Ia) and (Ib).

The reaction of (0.2 mole) mercuric acetate with (0.1 mole) methyl red gave rise to compound (II). The mechanism of the reaction is the same as in compound (I) but with the elimination of acetic acid instead of acetic anhydride in the case of compound (I). The mercuration was found to occur predominately in an ortho-position.¹⁰

The regio specificity of these reactions suggest that the mercury atom is directed to an ortho-position by coordination of the mercury to an azo nitrogen and the subsequent electrophilic substitution. The results are in agreement with the following proposed structure.
These results are further supported by IR and NMR spectroscopy. The IR spectra of compound (II) show an absorption bands at 825 and 770-735 Cm⁻¹, indicating 2 and 4 adjacent hydrogen atoms respectively, in the aromatic rings. The band at 1525 Cm⁻¹ is due to trans-\(\text{N} = \text{N} \) with little shift attributed to the coordination of the mercury atom to the azo nitrogen. The absorption bands at 2810, 1730, and 1385-1865 Cm⁻¹ are due to -\(\text{N} \)-(CH₃)₂ carbonyl and the acetate groups respectively. The NMR spectrum shows signals for aromatic protons at δ 7.3 ppm, δ 3.1 and δ 2.2 ppm for -\(\text{N} \)-(CH₃)₂ and -(COCH₃) protons respectively, which is in good agreement with the suggested structure.

The reaction of (0.1 mole) mercuric iodide with (0.1 mole) methyl red gave compound (III).

![Chemical Structure](image)

The reaction leads us to suggest that the mercury is directed into an ortho-position by coordination of the mercury to an azo nitrogen and followed by the subsequent electrophilic substitution. Electrophilic substitution reaction took place also in the aromatic ring containing -\(\text{N} \)-(CH₃)₂ with the elimination of hydrogen iodide and replacement of the iodine by the -OR group.

The structure was confirmed by elemental analysis, IR, and NMR spectra. The IR spectra showed a shift of -OR stretching vibration combined to mercury and C=O from 1730 in the case of methyl red to 1695 Cm⁻¹ for product (III). The NMR spectra show signals for aromatic protons at δ 7.3 ppm. The -\(\text{N} \)-(CH₃)₃ protons and OH proton have bands at δ 3.3 and δ 2.2 ppm respectively.

Methyl orange (0.1 mole) reacted with mercuric acetate (0.1 mole) by fusion to give mono-and di-mercurials product IV and V. The two products were isolated by fractional crystallisation from acetic acid. The proposed mechanism depends on coordination of mercury to an azo nitrogen followed by electrophilic substitution with the liberation of acetic anhydride as follows:
The infrared spectra of compound (IV) show the characteristic OH stretching broad band at 3600-2800 cm\(^{-1}\), which is attributed to hydrogen bonding. The stretching band at 2825 cm\(^{-1}\) is due to -N-(CH\(_3\))\(_2\). The absorption of the hydrogens of the ortho and para disubstituted benzene rings are at 845 and 820 cm\(^{-1}\). Product (V) was formed due to further mercuration of the mercurated compound (IV) in the ortho position respect to -N-(CH\(_3\))\(_2\)\(^{10}\).

The IR spectra of compound (V) agree with the proposed structure as well as with its elemental analysis.

The reaction of (0.1 mole) methyl orange with (0.2 mole) mercuric acetate produced a compound containing 3 atoms of mercury. The suggested structure was confirmed to be that of (VI). The proposed mec-
The mechanism is based on the coordination of mercury to an azo nitrogen followed by electrophilic substitution. The third mercury entered in the ortho position of the -N(CH₃)₂⁠¹⁰ group.

Elimination of acetic anhydride took place with the formation of product (VI) as follows:

\[\text{HO}_3\text{S} \text{N} = \text{N} \text{N} \text{HgOAc} \xrightarrow{-\text{Ac}_2\text{O}} \text{HO}_3\text{S} \text{N} = \text{N} \text{N} \text{HgOAc} \]

\[\text{VI} \]

The structure was confirmed by chemical analysis. IR and NMR spectra. The IR spectra showed bands at 3030, 1600, 890, 830 and 800 Cm⁻¹ indicating ortho-, para-substituted aromatic rings. The stretching band at 1712 Cm⁻¹ indicated the carbonyl of the acetate group, with the absorption bands at 1400, 1335, 1200 and 1145 Cm⁻¹ showing the presence of -SO₂-O. The band at 2805 and very weak band at 1575Cm⁻¹ are due to -N(CH₃)₂ and -N=N- respectively. The NMR spectra show the signals of the aromatic protons at δ 7.3 ppm. The signal at δ 1.58 ppm is due to CH₃COO- protons.

Reaction between (0.1 mole) methyl orange and (0.1 mole) mercuric chloride gave products (VII) and (VIII). The suggested structure for compound (VII) is the following:

\[\text{HO}_3\text{S} \text{N} = \text{N} \text{N} \text{Hg} \text{Cl} \]

\[\text{VII} \]

Electrophilic substitution reactions took place in the ortho-position to the azo group of the sulphonylic ring with the elimination of hydrochloric acid, it was crystallised from acetic acid.

However, for compound (VIII) the proposed structure is the following:
The reaction took place through electrophilic substitution followed by elimination of hydrochloric acid. It was noticed that one of the mercurated methyl orange acted as mercurating agent for the other. The structures were further supported by the results of elementel chemical analysis and IR spectra.

Mercuration of (0.1 mole) methyl red with (0.1 mole) mercuric chloride, and (0.1 mole) methyl red with (0.1 mole) mercuric oxide gave rise to undetectable products (IX), and (X) respectively.

REFERENCES
1- Chemistry Dept., Girls College, Science Section, Riyadh, Saudi Arabia.