Stability Analysis For Well Stirred Tank Cooled By Jacked

by

Mustafa ALPBAZ Mete KOÇKAR

Faculté des Sciences de l'Université d'Ankara
Ankara, Turquie
La Revue “Communications de la Faculté des Sciences de l'Université d'Ankara” est un organe de publication englobant toutes les disciplines scientifiques représentées à la Faculté des Sciences de l'Université d'Ankara.

La Revue, jusqu'à 1975 à l'exception des tomes I, II, III était composée de trois séries :
Série A : Mathématiques, Physique et Astronomie,
Série B : Chimie,
Série C : Sciences Naturelles.

A partir de 1975 la Revue comprend sept séries :
Série A₁ : Mathématiques,
Série A₂ : Physique,
Série A₃ : Astronomie,
Série B : Chimie,
Série C₁ : Géologie,
Série C₂ : Botanique,
Série C₃ : Zoologie.

A partir de 1983 les séries de C₂ Botanique et C₃ Zoologie ont été réunies sous la seule série Biologie C et les numéros de Tome commenceront par le numéro 1.

En principe, la Revue est réservée aux mémoires originaux des membres de la Faculté des Sciences de l'Université d'Ankara. Elle accepte cependant, dans la mesure de la place disponible les communications des auteurs étrangers. Les langues Allemande, Anglaise et Française seront acceptées indifféremment. Tout article doit être accompagné d'un résumé.

Les articles soumis pour publications doivent être remis en trois exemplaires dactylographiés et ne pas dépasser 25 pages des Communications, les dessins et figures portés sur les feuilles séparées devant pouvoir être reproduits sans modifications.

Les auteurs reçoivent 25 extraits sans couverture.

l'Adresse : Dergi Yayın Sekreteri,
Ankara Universitesi,
Fen Fakültesi,
Beşevler- Ankara
TURQUIE
Stability Analysis For Well Stirred Tank Cooled By Jacked

Mustafa ALPBAZ and Mete KOÇKAR

(Received November 2, 1984 and accepted March 6, 1985)

Chemical Engineering Department, Faculty of Science,
Ankara University - ANKARA
Chemical Engineering Department, Engineering Faculty
Anadolu University - ESKİŞEHIR

SUMMARY

In this work, Routh stability analysis was applied to choose the suitable control parameters for the feedback control of the well stirred tank cooled by jacked. For this purposes the related mathematical models (1) was converted to the Laplace Transfrom and the values of parameters were calculated with stability test.

INTRODUCTION

A stable system can be defined as one for which the output response is bounded for all bounded inputs. A system exhibiting an unbounded response to a bounded input is unstable.

The stability criterion can be used to ascertain the stability of control system of the form shown in Fig. 1. From the block diagram of the control system, the related equation can be obtained.

\[C = \frac{G_1G_2}{1 + G_1G_2H} R + \frac{G_2}{1 + G_1G_2H} U \] \hspace{1cm} (1)

\[G = G_1G_2H \] \hspace{1cm} (2)

We call, \(G \), the open-loop transfer function. A linear control system is unstable, if any roots of its characteristic equation, \(1 + G_1G_2H \), are on the imaginary axis. Otherwise the system is stable. The Routh test for stability is a purely algebraic method for determining how many roots of the characteristic equation have positive real parts; from this
it can also be determined if the system is stable, for if there are no roots with positive real parts, the system is stable. The test is limited to system which have polynomial characteristic equations. This stability criterion can be found in many text book (2).

In present work, Routh stability test were applied to the well mixed tank cooled by jacked.

MATHEMATICAL MODELS AND STABILITY ANALYSIS

The related mathematical models dealing with well mixed tank cooled by jacked were drived in the work of Alpbaz and Erdoğan (3,4). The linearized models are shown below;

$$\frac{dT'_{po}}{dt} = \left(\frac{T'_{po} - T_{po}}{M_v}\right) M_p' - \left(\frac{UA + M_pC_p}{M_vC_p}\right) T'_{po} + \left(\frac{UA}{2M_vC_p}\right) T'_{co}$$

\[(3)\]

$$\frac{dT'_{co}}{dt} = \left(\frac{T'_{co} - T_{co}}{M_c}\right) M_c' - \left(\frac{M_cC_c + UA}{M_c}\right) T'_{co} + \left(\frac{UA}{M_c}\right) T'_{po}$$

\[(4)\]

The range of parameters and the solution of related models with Laplace transform and digital computer solutions are found in the work of Alpbaz, Erdoğan and Koçkar (5).

Consider the system differential equations (3,4) with numerical values, Table. 1.
\[
\frac{dT'_{po}}{dt} = \left(\frac{64-71.49}{32595}\right)M'_p - \left(\frac{6+3.45015}{21512.7}\right)T'_{po} + \left(\frac{6}{2(21512.7)}\right)T'_{co}
\]
\[(5) \]

\[
\frac{dT'_{co}}{dt} = \left(\frac{17-33.21}{4922.8}\right)M'_c - \left(\frac{17}{4922.8}\right)T'_{co} + \left(\frac{6}{4922.8}\right)T'_{po}
\]
\[(6) \]

\[
\frac{dT'_{po}}{dt} = -\left(2.2978\times10^{-4}\right)M'_p - \left(4.3928\times10^{-4}\right)T'_{po} + \left(1.394\times10^{-4}\right)T'_{co}
\]
\[(7) \]

\[
\frac{dT'_{co}}{dt} = -\left(4.062\times10^{-3}\right)T'_{co} + \left(1.218\times10^{-3}\right)T'_{po} - \left(3.292\times10^{-3}\right)M'_c
\]
\[(8) \]

Transforming;

\[
\bar{T}'_{po} = -\left(\frac{2.2978\times10^{-4}}{s + 4.3928\times10^{-4}}\right)\bar{M}'_p + \left(\frac{1.394\times10^{-4}}{s + 4.3928\times10^{-4}}\right)\bar{T}'_{co}
\]
\[(9) \]

\[
\bar{T}'_{co} = \left(\frac{1.218\times10^{-3}}{s + 4.062\times10^{-3}}\right)\bar{T}'_{po} - \left(\frac{3.292\times10^{-3}}{s + 4.062\times10^{-3}}\right)\bar{M}'_c
\]
\[(10) \]

The stability analysis were applied for each control system.

i- Proportional Control

\[
\bar{M}'_c = -K_c\bar{T}'_{po}
\]
\[(11) \]

If equation (11) is put into equation (10);

\[
\bar{T}'_{co} = \left(\frac{1.218\times10^{-3}}{s + 4.062\times10^{-3}}\right)\bar{T}'_{po} - \left(\frac{3.292\times10^{-3}}{s + 4.062\times10^{-3}}\right)(-K_c\bar{T}'_{po})
\]
\[(12) \]

\[
\bar{T}'_{co} = \left(\frac{3.292\times10^{-3}K_c + 1.218\times10^{-3}}{s + 4.062\times10^{-3}}\right)\bar{T}'_{po}
\]
\[(13) \]

If equation (13) is put into equation (9);

\[
\bar{T}'_{po} = -\left(\frac{2.2978\times10^{-4}}{s + 4.392\times10^{-4}}\right)\bar{M}'_p + \left(\frac{1.394\times10^{-4}}{s + 4.392\times10^{-4}}\right)\bar{T}'_{co}
\]
\[(14) \]

\[
\left(\frac{3.292\times10^{-3}K_c + 1.218\times10^{-3}}{s + 4.062\times10^{-3}}\right)\bar{T}'_{po}
\]

and then
\[T'_{po} = -\(2.297 \times 10^{-4}\) \]

\[
\left[\frac{s + 4.062 \times 10^{-3}}{s^2 + 4.5012 \times 10^{-3} s + 1.6143 \times 10^{-6} - 4.5892 \times 10^{-7} K_c} \right] M'_{p} \tag{15}
\]

The characteristic equations:

\[s^2 + 4.5012 \times 10^{-3} s + (1.6143 \times 10^{-6} - 4.5892 \times 10^{-7} K_c) = 0 \tag{16} \]

For stable time response, the roots should be real:

\[
(4.5012 \times 10^{-3})^2 - 4(1.6143 \times 10^{-6} - 4.5892 \times 10^{-7} K_c) > 0 \tag{17}
\]

\[
1.3803 \times 10^{-5} + 1.8356 \times 10^{-6} K_c > 0 \tag{18}
\]

Therefore,

\[K_c > -7.5 \]

For Routh stability test, if any coefficient of the characteristic equation is negative or zero a system is unstable,

\begin{array}{c|c|c}
1 & 1 & 1.6143 \times 10^{-6} - 4.5892 \times 10^{-7} K_c \\
2 & 4.5012 \times 10^{-3} \\
3 & 1.6143 \times 10^{-6} - 4.5892 \times 10^{-7} K_c \\
\end{array}

Hence,

\[K_c < 3.51 \]

ii– Proportional + Integral control

\[M'_{c} = -K_c \left(1 + \frac{K_i}{K_c} \frac{1}{s}\right) T'_{po} \tag{19}\]

If equation (19) is put into equation (10),

\[T'_{co} = \left(\frac{1.218 \times 10^{-3}}{s + 4.062 \times 10^{-3}}\right) T'_{po} - \left(\frac{3.292 \times 10^{-3}}{s + 4.062 \times 10^{-3}}\right) \]

\[\left[-K_c \left(1 + \frac{K_i}{K_c} \frac{1}{s}\right) \right] T'_{po} \tag{20}\]

\[T'_{co} = \left[\frac{(1.218 \times 10^{-3} + 3.292 \times 10^{-3} K_c) s + 3.292 \times 10^{-3} K_i}{s(s + 4.062 \times 10^{-3})}\right] T'_{po} \tag{21}\]

Put this equation (21) into equation (9).
STABILITY ANALYSIS

\[\bar{T}_{po} = - \left(\frac{2.297 \times 10^{-4}}{s + 4.392 \times 10^{-4}} \right) \bar{M}_p + \left(\frac{1.392 \times 10^{-4}}{s + 4.392 \times 10^{-4}} \right) \left[\frac{(1.218 \times 10^{-3} + 3.292 \times 10^{-3} K_c) s + 3.292 \times 10^{-3} K_I}{s (s + 4.062 \times 10^{-3})} \right] \bar{T} \] \[(22) \]

The characteristic equation,
\[s^3 + 4.5012 \times 10^{-3} s^2 + (1.614 \times 10^{-6} - 4.589 \times 10^{-7} K_c) s - 4.589 \times 10^{-7} K_I = 0 \] \[(23) \]

If Routh test is applied,
For stability, \((-4.589 \times 10^{-7} K_I)\) and \((1.614 \times 10^{-6} - 4.589 \times 10^{-7} K_c + 1.01 \times 10^{-4} K_I)\) must be positive. In this case \(K_I < 0.0\) and
\[T_R = \frac{K_c}{K_I} \] being positive and than \(K_c < 0.0\)

iii- Proportional + Derivative + Integral Control

\[\bar{M}_c = - K_c \left(1 + \frac{K_d}{K_c} \right) s + \frac{K_I}{K_c} \frac{1}{s} \bar{T}_{po} \] \[(24) \]

Put into equation (10),
\[\bar{T}_{co} = \left(\frac{1.218 \times 10^{-3}}{s + 4.062 \times 10^{-3}} \right) \bar{T}_{po} - \left(\frac{3.292 \times 10^{-3}}{s + 4.062 \times 10^{-3}} \right) \] \[(25) \]
\[\left[- K_c \left(1 + \frac{K_d}{K_c} \right) s + \frac{K_I}{K_c} \frac{1}{s} \right] \bar{T}_{po} \] \[(25) \]
\[\bar{T}_{co} = \left[\frac{(1.218 \times 10^{-3} + 3.292 \times 10^{-3} K_c) s + 3.292 \times 10^{-3} K_d s^2 + 3.292 \times 10^{-3} K_I}{s (s + 4.062 \times 10^{-3})} \right] \] \[(26) \]

If equatin (26) is put into equation (9), characteristic equation is become,
\[s^3 + (4.501 \times 10^{-3} - 4.587 \times 10^{-7} K_d) s^2 + (1.614 \times 10^{-6} - 4.587 \times 10^{-7} K_c) s - 4.587 \times 10^{-7} K_I = 0 \] \[(27) \]

Hence \((-4.587 \times 10^{-7} K_I)\) requires that \(K_I < 0.0\) and than \(K_c < 0.0\)

and \(T_D = \frac{K_D}{K_c} \) should be positive and \(K_d < 0.0\)
RESULTS

In the previous work (5), the time response of the tank output temperature was calculated and it was observed the variation of output temperature with time was stable when tank was under the effect of the step change given to the feed flow rate.

In the present work, the feedback control system was added to force the output temperature for reaching to the set point. In control solution, three term control mechanism was introduced to the differential equations (3,4) which describe the dynamic response of the mixing tank and this equations were solved with Laplace transfrom. When the system was in the steady-state having operating condition shown in Table. 1, the step change was given to the feed flow rate and it was investigated the effect of the control parameters on the output temperature. The effect of the proportional acting factor, K_c, on the output temperature was shown in Fig. 2. When K_c was increasing the output temperature came closer to the setpoint with oscillation. But including two other control parameters, T_r, and, T_d, the time response of the output temperature become unstable, Fig. 3. For this reason Routh stability test was applied to obtain stability on the output variables and than proper control parameters were calculated as it was shown in this work. In Fig. 4, the time response of the output temperature with suitable control parameters was shown. It can be seen that the output variables are stable.

<table>
<thead>
<tr>
<th>$\text{Mp} \left(\frac{\text{g}}{\text{sec}} \right)$</th>
<th>$\text{Mc} \left(\frac{\text{g}}{\text{sec}} \right)$</th>
<th>$\text{Tp}_i (\text{C}^\circ)$</th>
<th>$\text{Te}_i (\text{C}^\circ)$</th>
<th>$\text{UA} \left(\frac{\text{Cal}}{\text{secC}^\circ} \right)$</th>
<th>Ke</th>
<th>Ki</th>
<th>Kd</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.20</td>
<td>17.0</td>
<td>64.0</td>
<td>17.0</td>
<td>6.00</td>
<td>-5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5.22</td>
<td>17.0</td>
<td>64.0</td>
<td>17.0</td>
<td>6.00</td>
<td>-5</td>
<td>-0.02</td>
<td>—</td>
</tr>
<tr>
<td>5.22</td>
<td>17.0</td>
<td>64.0</td>
<td>17.0</td>
<td>6.00</td>
<td>-5</td>
<td>-0.02</td>
<td>-0.02</td>
</tr>
</tbody>
</table>
Figure 2. The effect of the proportional acting factor Kc on the output temperature.
\(\left(M_p^o = 8.20 \text{ g/sec}, \ M_p = 5.22 \text{ g/sec} \right) \)

Figure 3. The effect of the control parameters on the output tank temperature and unstability
\(\left(M_p^o = 8.20 \text{ g/sec}, \ M_p = 5.22 \text{ g/sec} \right) \)
Figure 4. The feedback control of the output tank temperature when the step change was given to the feed flow rate. ($M_{p}^c = 8.20$ g/sec, $M_p = 5.22$ g/sec)

NOMENCLATURE

A Heat transfer surface (cm2)
C Controlled variable
C_c Specific heat of coolant (cal/g °C)
C_p Specific heat of tank content (cal/g °C)
G_n Transfer functions of n'th elements
H Transfer function of measuring element
K_c Proportionol acting factor.
K_d Derivative action factor
K₁ Integral acting factor
Mₑ Coolant mass flow rate (g/sec)
Mₚ Feed mass flow rate (g/sec)
Mᵥ Mass hold up in the tank (g)
Mᵣ Mass hold up in the jacked (g)
R Set point
s Laplace operature
Tₑf Feed temperature (°C)
Tₑ₀ Output temperature (°C)
Tₑ₀ Output coolant temperature (°C)
t Time
U Overall heat transfer coefficient (cal/cm² sec °C), Disturbance
δ Density (g/cm³)
µ Viscosity (g/cm sec)

ÖZET

Bu çalışmada, dışarıdan ekctele soğutulan tam karıştırma akım tankının geri beslemeli kontrolü için kontrol parametrelerinin uygun değerlerinin seçiminde Routh kararlılık testi uygulanmıştır. Bu amaca ilgili matematiksel modelerin (1) Laplace dönüşümleri alınmış ve kararlılık analizi ile parametrelerin değerleri hesaplanmıştır.

REFERENCES

1– Koçkar, M. Msc Thesis Anadolu University (1983)