ELECTROCHEMICAL BEHAVIOUR OF VIBRATED AND
STATIONARY TIN ELECTRODE IN VARIOUS MEDIA

by

S.M. ABD EL WAHAAB and G.E.K. GOMMA

16

Faculté des Sciences de l'Université d'Ankara
Ankara, Turquie
La Revue "Communications de la Faculté des Sciences de l'Université d'Ankara" est un organe de publication englobant toutes les disciplines scientifiques représentées à la Faculté des Sciences de l'Université d'Ankara.

La Revue, jusqu'à 1975 a l'exception des tomes, I, II, III était composée de trois séries

Série A : Mathématiques, Physique et Astronomie,
Série B : Chimie,
Série C : Sciences Naturelles.

A partir de 1975 la Revue comprend sept séries:

Série A₁ : Mathématiques,
Série A₂ Physique,
Série A₃ : Astronomie,
Série B : Chimie,
Série C₁ : Géologie,
Série C₂ : Botanique,
Série C₃ : Zoologie.

A partir de 1983 les séries de C₂ Botanique et C₃ Zoologie ont été réunies sous la seule série Biologie C et les numéros de Tome commencerons par le numéro 1.

En principe, la Revue est réservée aux mémoires originaux des membres de la Faculté des Sciences de l'Université d'Ankara. Elle accepte cependant, dans la mesure de la place disponible les communications des auteurs étrangers. Les langues Allemande, Anglaise et Française seront acceptées indifféremment. Tout article doit être accompagné d'un résumé.

Les articles soumis pour publications doivent être remis en trois exemplaires dactylographiés et ne pas dépasser 25 pages des Communications, les dessins et figures portés sur les feuilles séparées devant pouvoir être reproduits sans modifications.

Les auteurs reçoivent 25 extraits sans couverture.

L'Adresse : Dergi Yayın Sekreteri
Ankara Üniversitesi,
Fen Fakültesi,
Beşevler-Ankara
TURQUIE
ELECTROCHEMICAL BEHAVIOUR OF VIBRATED AND STATIONARY TIN ELECTRODE IN VARIOUS MEDIA

By

S.M. ABDEL WAHAAB* and G.E.K. GOMMA**

* Ain Shams University, Faculty of Science, Department of Chemistry, Cairo, Egypt.
* Tanta University, Faculty of Education, Department of Chemistry, Kafr El-Shaikh, Egypt.

ABSTRACT

The corrosion behaviour of both vibrated and stationary tin electrodes in aerated solutions of KCl, K_2SO_4, HCl and NaOH was examined by means of potential-time measurements. The effect of temperature on the electrode potential was also studied. The results of present study indicate that the shift of corrosion potential becomes more negative for the vibrated one than its values for the stationary case. The potential-temperature diagrams obtained within the temperature range 25-60 °C were interpreted in the light of the theory of lattice defects. The E'_c values vary linearly with temperature with a coefficient of -3 mV/°C. The potential is governed by the Sn/Sn^{4+}/SnO^{2+} system. At pH 5-11 the Sn/Sn(OH)_2 potential predominates, whereas at higher pH values stannite ions are formed and their activity governs the electrode potential.

INTRODUCCIÓN

Local corrosion sometimes produces small black spots which may grow into damaging pits. The occurrence of this local corrosion has been studied by Schultz [1] and by Brennert [2] and the electrochemistry of its action on pure tin has been investigated by Hoar [3]. Both Brennert and Hoar showed that the first change on a tin surface immersed in a neutral solution was the reinforcement of the air-formed oxide film by precipitation of oxide or hydroxide at point where tin ions emerged through the film. In a more general theory of the course of pitting, Hoar [4] has pointed out that when most of the surface becomes covered by a protective film, the anodic current density on the areas still unprotected would be sufficient to cause a levelling down of pH of the solution and thereby to prevent further healing of the surface pores by insoluble salts. Britton and Michael [5] reported that the local corrosion of tin by dilute chloride solution was increased by lowering the pH. Bannister [6] reported that the corrosion product on an ancient specimen of pure
tin is composed of 43% hydrated stannous oxide and 55% anhydrous stannic oxide. Yang [7] and Thomas [8] believed that at room temperature the oxide film on tin consists of stannous oxide. The electrode surface was conceived to be covered with a thin impervious layer of tin dioxide overlaid with oxygen doublets, its lattice being most probably deficient in oxygen. The effect of temperature on such mobile oxygen layers has proved to provide a more or less similar picture regarding the mode of oxidation of metals with oxygen-deficient oxide lattices [9]. All of these studies were carried out in the case of stationary tin electrode. The present study deals with the corrosion behaviour of both stationary and vibrated tin electrode in different media.

EXPERIMENTAL

Material and methods:

The electrode used was in the form of rod of spectroscopically pure tin (Johnson and Matthey London), each 1 cm long and 1 cm in diameter. Before each measurement the electrode surface was efficiently polished to attain a smooth bright surface, thoroughly washed with redistilled water and then with the solution to be used. Experiments were made in hydrochloric acid, sodium hydroxide, potassium chloride and potassium sulphate solutions with different concentrations. All experiments were carried out at 25°C. The behaviour of tin electrode was investigated by the potential-time technique and effect of temperature is also studied. The circuit used is shown in fig. 1.

RESULTS

Potential-time results:

The steady state potential values of stationary and vibrated tin electrodes are shown in table (1).

The potential of tin electrode immersed in conc. HCl shifts towards more negative values with time for both stationary and vibrated tin electrodes. The shift of vibrated tin electrode potential immersed in concentrated hydrochloric acid (5M-4M) in the negative direction is more than observed for stationary electrode. But the trend is reversed if the electrode immersed in diluted HCl (from 1M to 10^-1M). The obtained results for potential of tin electrode in sodium hydroxide, potassium chloride and potassium sulphate show that the negative shift of vibrated tin electrode with time exceeds the values of stationary electrodes.
Fig. 1. Relationship between log S and \(pK_2 \)

<table>
<thead>
<tr>
<th>Solutions</th>
<th>Molar Concentrations</th>
<th>Steady state potential mV.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Stagnant</td>
</tr>
<tr>
<td>KCl</td>
<td>1 M</td>
<td>-520</td>
</tr>
<tr>
<td></td>
<td>(1 \times 10^{-1}) M</td>
<td>-435</td>
</tr>
<tr>
<td></td>
<td>(1 \times 10^{-2}) M</td>
<td>-295</td>
</tr>
<tr>
<td></td>
<td>(1 \times 10^{-3}) M</td>
<td>-285</td>
</tr>
<tr>
<td>(K_2SO_4)</td>
<td>(1 \times 10^{-1}) M</td>
<td>-540</td>
</tr>
<tr>
<td></td>
<td>(1 \times 10^{-2}) M</td>
<td>-440</td>
</tr>
<tr>
<td></td>
<td>(1 \times 10^{-3}) M</td>
<td>-320</td>
</tr>
<tr>
<td></td>
<td>(1 \times 10^{-4}) M</td>
<td>-185</td>
</tr>
<tr>
<td>NaOH</td>
<td>1 M</td>
<td>-1180</td>
</tr>
<tr>
<td></td>
<td>(1 \times 10^{-1}) M</td>
<td>-1960</td>
</tr>
<tr>
<td></td>
<td>(1 \times 10^{-2}) M</td>
<td>-760</td>
</tr>
<tr>
<td></td>
<td>(1 \times 10^{-3}) M</td>
<td>-450</td>
</tr>
<tr>
<td></td>
<td>(1 \times 10^{-4}) M</td>
<td>-100</td>
</tr>
<tr>
<td>HCl</td>
<td>5 M</td>
<td>-685</td>
</tr>
<tr>
<td></td>
<td>4 M</td>
<td>-665</td>
</tr>
<tr>
<td></td>
<td>(2 \times 10^{-1}) M</td>
<td>-515</td>
</tr>
<tr>
<td></td>
<td>(1 \times 10^{-2}) M</td>
<td>-360</td>
</tr>
</tbody>
</table>
Table 2. Steady-state potential results for stagnant and vibrated tin electrode at different amplitude and constant frequency.

<table>
<thead>
<tr>
<th>Solutions</th>
<th>Molar Conc.</th>
<th>Steady-state potential mV.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>stagnant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 amp.</td>
</tr>
<tr>
<td>KCl</td>
<td>1×10^{-1} M</td>
<td>-495</td>
</tr>
<tr>
<td>K$_2$SO$_4$</td>
<td>1×10^{-2} M</td>
<td>-415</td>
</tr>
<tr>
<td>NaOH</td>
<td>1×10^{-1} M</td>
<td>-1060</td>
</tr>
<tr>
<td>HCl</td>
<td>2×10^{-1} M</td>
<td>-515</td>
</tr>
</tbody>
</table>

From fig. (2, 3) and table (2) it is clear that the effect of variation of different amplitude at constant frequency (f=10), leads to a maximum increase at amplitude $= 2$ and $f = 10$ for KCl. In case of K$_2$SO$_4$, the potential increases with increasing amplitude. But in NaOH solution the potential decreases by increasing the amplitude. Further increase of amplitude leads to increase in potential. This indicates that the product of amplitude x frequency or the velocity of electrode affects its potential. Figs. (4), (5), (6) and (7) shows the relationships between steady state potential values and logarithm of molar concentration of NaOH, HCl, K$_2$SO$_4$ and conc. HCl respectively in stationary and vibrated case. The steady-state potential of tin electrode shifts to more active values (towards negative direction) with increasing the molar concentration of solution. It is also shown that the steady-state potential has highly negative values in vibrated case comparing with those obtained for the stationary electrode potentials at the same concentration.

Effect of Temperature.

The results obtained for the study of temperature on stationary tin electrode show that the potential varies with time at all the investigated temperatures within narrow limits, showing drifts towards more active values. Steady-states are approached within 2-3 hours from immersion in the tested aerated solutions. By plotting E_H-pH plots obtained with electrode subjected alternately to the reducing action of hydrogen are all characterized by a sudden potential jump occurring at about pH 11-13 at 30 °C.

Table 3

<table>
<thead>
<tr>
<th>pH values</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_H mV.</td>
<td>440</td>
<td>489</td>
<td>510</td>
<td>580</td>
<td>650</td>
<td>700</td>
<td>780</td>
<td>785</td>
<td>790</td>
<td>1000</td>
</tr>
</tbody>
</table>

The Eo' values which obtained by extrapolating the corresponding E_H-pH plots for tin electrode are shown in table (4).
Table 4

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>25°</th>
<th>30°</th>
<th>35°</th>
<th>40°</th>
<th>45°</th>
<th>50°</th>
<th>55°</th>
<th>60°</th>
</tr>
</thead>
<tbody>
<tr>
<td>E'_o mV.</td>
<td>485</td>
<td>480</td>
<td>467</td>
<td>452</td>
<td>453</td>
<td>399</td>
<td>475</td>
<td>445</td>
</tr>
</tbody>
</table>

By plotting E_o' against temperature, Fig. (8) obtained which passes through a minimum and a maximum within the investigated temperature range $30-50°$.

DISCUSSION

Potential-time discussion

The results of the present study in both stagnant and vibrated electrode indicated that the potential of tin metal depends on the diluted range from 10^{-4} to 1M. The relation between steadystate potential “E” and logarithm of molar concentration “C” of the aggressive anions in the concentration range 10^{-4} to 1M is approximately of the form

$$E = a - b \log C$$

where (b) is approximately constant and equals 125 mV, and (a) is a constant depends upon the nature of the anion. From Fig. (4) it is obvious that solution of NaOH is more aggressive in both stagnant and vibrated cases.

It is well known that the hydrogen overpotential of tin is very large; it follows from this that acid and moderately alkaline solutions free from oxidizing agents will be only slightly corrosive when tin is pure. Thus in acid solution in presence of air, tin is corroded by mineral acids [10] as HCl. But in case of oxidizing acids such as nitric acid are generally corrosive, and the addition of small quantities of oxidizing agent causes an increase in the corrosion to a limite values. In alkaline NaOH solutions the pH is sufficiently high to dissolve the film of oxide (SnO$_2$) already existing on the metal. It is also found that when the pH is sufficiently high, the dissolution of tin again depends to a large extend on the presence of oxidizing agent as in case of acid [11]. In case of KCl and K$_2$SO$_4$ solutions i.e. neutral solutions (pH=6.9 for KCl and 7 for K$_2$SO$_4$) a passivation occurs, this passivation would correspond to the metal being covered with a layer of stannic oxide SnO$_2$. This solution causes back stains to appear on the surface of the metal [3, 12]. The oxide film pre-existing on the metal has weak points when corrosion begins and consequently a new protective layer, made up of a mixture of stannous and stannic oxides; can be formed at the point of attack, these
stains occur in KCl and K₂SO₄ which do not form a precipitate with stannous ions. Thus the dissolution of tin in neutral or alkaline solutions gives rise to the formation of stannous hydroxide Sn(OH)₂, an amphoteric hydroxide which dissolves in acid media as stannous ions Sn⁺⁺ and in alkaline media as stannite ions HSnO₂⁻ and stannate ions SnO₃⁻⁻. A greater degree of oxidation leads to the formation of stannic hydroxide Sn(OH)₄, an amphoteric hydroxide which dissolves in acid media as stannic ions Sn⁺⁺⁺ and in alkaline media as stannate ions SnO₃⁻⁻. The hydroxides Sn(OH)₂ and Sn(OH)₄ are thermodynamically less stable than the corresponding oxides SnO and SnO₂, and tend to change into these oxides with affinities respectively of 590 and 9090 cal. [13]. When a rotating electrode was used, it was found that critical potential rises considerably [14] which is in agreement with our results that the vibration accelerate the dissolution of the metal [15].

Effect of Temperature.

The potential recorded by Sn electrode after being subjected to the reducing action of hydrogen reveal that such pretreatment made the electrode surface active. The results obtained in air can be explained on the premise that Sn is oxidized forming a thin layer of SnO₂ on which oxygen from the atmosphere persists as charged doublets, rendering the electrode surface passive and contributing an overvoltage effect. The decrease of E₀' values obtained with the rod electrode from 30–40 °C, shows that raising the temperature activates the local action process set up in solution between the metal-metal oxide and the oxide-oxygen film interfaces as anode and cathode respectively, leading to increased depolarization of oxygen doublets. The fact that the potential varies linearly with temperature along the range 30-45 °C. with a coefficient of 3mV/°C shows that the electrode behaviour is governed by a stable system presumably the SnO⁺⁺ / Sn⁺⁺⁺ oxidation-reduction couple. The lower temperature coefficient may be related to the counteracting oxidation effect brought about by discharged OH⁻ ions, thus

\[\text{OH}^- + \text{OH}^- = \text{O} + \text{H}_2\text{O} + 2e \]

(1)

It has to be recognized that as long as there exists bare metal parts on the electrode surface, the process of OH⁻ ion discharge will be enhanced opposing thus the depolarizing effect of increasing temperature. Accordingly, a temperature would be reached at which the discharge process overweighs the desorption process, leading to increased oxidation of the bare metal parts and subsequently to the accumulation of oxygen
doublets on the electrode surface rendering it passive. This behaviour
is substituted by the minimum occurring at — 43 °C, followed by sharp
potential rise towards a maximum Eo' value attained at 51 °C. At tem-
peratures higher than ~ 43 °C, oxygen evolved by the discharge process
accumulates on the electrode surface after the process of oxidation has
been completed leading to the observed overvoltage effect. The rapid
fall of Eo' with rise of temperature from — 51 — 60 °C, indicating that
the adsorbed oxygen is progressively desorbed being incapable to persist
on the electrode surface at such relatively high temperature. The ease
with which oxygen is desorbed suggests that the gas is loosely held to
the electrode surface, presumably by Van der Waal’s molecular forces,
rather than being chemisorbed. This is explained on the fact that, Van der
Waal’s molecular forces is characterized by low heat of adsorption ran-
ging from (5-10 kcal per mol) of gas compared with the highly value as-
associated chemisorption from 10-100 kcal. mol⁻¹ [16]. The difference in
potential between the minimum and maximum values obtained at 43°
and 51 °C respectively, amount to 43 mV. This value corresponds to 3.5
kcal., associating the discharge of one mole of oxygen on the electrode
surface according to reaction (1), this value (3.5 kcal) which is compar-
able with quantity encountered in physical adsorption.

REFERENCES

1. MOHR, W. and SCHULTZ M., MILCHWIRTCH. Z., 26 a -28a, 1037 (1930).
 (1952)
11. KERR, R., The use of Sodium Sulphite as an addition to alkaline detergents for tinned ware,
 J. Soc. Chem. Ind. 54, 217–21 (1935)
12. BRENNERT, S., Uber die Korrosion von Zinn und verzinkten Materialn under Bildung

16. GLASSTONE, S., and LEWIS, D., Elements of Physical Chemistry Second Edition