Pressure Drop in The Hydrocyclone

by

T. ÖZDAMAR, A. OLCAY

Faculté des Sciences de l'Université d'Ankara
Ankara, Turquie
La Revue “Communications de la Faculté des Sciences de l'Université d'Ankara” est un organe de publication englobant toutes les disciplines scientifiques représentées à la Faculté: Mathématiques pures et appliquées, Astronomie, Physique et Chimie théorique, expérimentale et technique, Géologie, Botanique et Zoologie.

La Revue, à l'exception des tomes I, II, III, comprend trois séries

Série A: Mathématiques, Physique et Astronomie.

Série B: Chimie.

Série C: Sciences naturelles.

En principe, la Revue est réservée aux mémoires originaux des membres de la Faculté. Elle accepte cependant, dans la mesure de la place disponible, les communications des auteurs étrangers. Les langues allemande, anglaise et française sont admises indifféremment. Les articles devront être accompagnés d'un bref sommaire en langue turque.
Pressure Drop in The Hydrocyclone*

T. ÖZDAMAR, A. OLCAY

Department of Industrial Chemistry, Faculty of Science, University of Ankara
Ankara - Turkey
(Received May 13, 1971)

The success of removal of suspended solid from suspending liquid by a hydrocyclone is a function of the dimensions of the hydrocyclone, operation variables, and physical properties of the liquid and particles. Hydrocyclone develops separational power through the use of fluid pressure energy. There is thus a loss in pressure or a pressure drop, across the unit which is an important operating variable.

In this article the pressure drop in the hydrocyclone is given by an equation which depends on the velocity head, Reynolds number, and shape factors of the hydrocyclone. A summary of the utility of the equations presented by earlier authors is also given.

INTRODUCTION

The hydrocyclone is a piece of equipment which utilizes fluid pressure energy to create rotational fluid motion. This rotational motion causes relative movement of materials suspended in the fluid thus permitting separation of these materials one from another or from the liquid. The rotation is produced by tangential injection of the fluid into a vessel. At the point of entry the vessel is usually cylindrical. It can remain cylindrical over its entire length though it is more usual for it to become conical. The important criterion which distinguishes a hydrocyclone is not, however, the shape of the vessel but the use of fluid pressure to cause rotation.

DERIVATION OF THE EQUATION AND PHENOMENOLOGY

Operating a hydrocyclone requires a certain pressure drop which increases with the throughput and further depends

* The data recorded are taken from a part of the dissertation of T. Özdamar submitted to the Faculty of Science in partial fulfillment of the requirements for the Master Degree.
Cross-sections of a hydrocyclone
on the construction of the hydrocyclone. Inside the hydrocyclone there exists a pressure gradient. In nearly all practical cases a gas core develops. The absence of a gas core generally results in an increase of the total pressure drop at the same throughput and a lowering of the efficiency.

The pressure drop in a hydrocyclone depends on the diameter \((D_c)\), inlet velocity \((U_i)\), liquid density \((d_l)\), liquid viscosity \((n)\), conical length \((Z_c)\), and the shape factors \((S)\).

\[(-\triangle P) \ g_c = f \ (D_c, U_i, d_l, n, Z_c, S_1, S_2, S_3, \ldots, S_n) \]

The shape factors are:

\[
S_1 = \frac{D_i}{D_c}
\]

\[
S_2 = \frac{D_o}{D_c}
\]

\[
S_3 = \frac{D_u}{D_c}
\]

\[
S_4 = \frac{L}{D_c}
\]

\[
S_5 = \frac{1}{D_c}
\]

Ignoring temporarily the shape factors,

\[(-\triangle P) \ g_c = f \ (D_c, U_i, d_l, n, Z_c) \]

Application of the method of dimensional analysis:

\[
(-\triangle P) \ g_c = \ C_1 \ (D_c^a \ U_i^b \ d_l^c \ n^d \ Z_c^e) + C_2 \ (D_c^{a'} \ U_i^{b'} \ d_l^{c'} \ n^{d'} \ Z_c^{e'}) + \ldots
\]

where \(a, b, c, d, \) and \(e\) are constant exponents and \(C_1, \) and \(C_2\) are constants. Since the dimensions of each term in the series are identical, only the dimensions of the first term of equation need be considered for dimensional homogenity

\[(-\triangle P) \ g_c = \ C_1 \ (D_c^a \ U_i^b \ d_l^c \ n^d \ Z_c^e) \]
For each variable in the equation, substitution of the appropriate dimensions gives

\[
\frac{\bar{F}}{\bar{L}^2} \frac{\bar{M} \bar{L}}{\bar{t}^3 \bar{F}} = \frac{M}{\bar{L}} \frac{\bar{t}^2}{\bar{t}^2}
\]

\[
= C_1 (\bar{L})^a \left(\frac{\bar{L}}{\bar{t}} \right)^b \left(\frac{\bar{M}}{\bar{L}^3} \right)^c \left(\frac{\bar{M}}{\bar{L} \bar{t}} \right)^d \left(\bar{L} \right)^e
\]

Sum of the exponents for \(\bar{M} \): \(1 = c + d \)

Sum of the exponents for \(\bar{L} \): \(-1 = a + b - 3c - d - e \)

Sum of the exponents for \(\bar{t} \): \(-2 = -b - d \)

Solving for \(a, b, \) and \(c \) in terms of \(d \) and \(e \) gives

\[
c = 1 - d \\
b = 2 - d \\
a = -d - e
\]

Equation than may be written

\[
(- \triangle P) g_c = C_1 (D_c)^{-d-e} (U_i)^{2-d} (d_i)^{-d} (n)^d (Z_c)^e
\]

\[
(- \triangle P) g_c = C_1 (U_i^2 d_i) \left(\frac{n}{D_c U_i d_i} \right)^d \left(\frac{Z_c}{D_c} \right)^e
\]

\[
\frac{(- \triangle P) g_c}{U_i^2 d_i} = C \left(\frac{D_c U_i d_i}{n} \right)^{-d} \left(\frac{Z_c}{D_c} \right)^e
\]

By taking account of the shape factors,

\[
\frac{(- \triangle P) g_c}{1 - U_i^2 d_i} = \left(\frac{D_c U_i d_i}{n} \right)^{-d} \left(\frac{Z_c}{D_c} \right)^e
\]

\[
\left(\frac{Z_c}{D_c} \right)^e \left(\frac{D_i}{D_c} \right) \left(\frac{D_o}{D_c} \right) \left(\frac{D_{u}}{D_c} \right) \left(\frac{L}{D_c} \right) \left(\frac{1}{D_c} \right)
\]
SIGNIFICANCE OF DIMENSIONLESS GROUPS AND VALUES OF COEFFICIENTS

The pressure drop in hydrocyclones is in a form made up of several groups of variables, each of which is in itself dimensionless.

\[N_{Re} = \frac{D_c \ U_i \ d_i}{n} \]

is the Reynolds number. The coefficient of the Reynolds number determined by experiments, varying from \(-0.1\) to \(-0.5\), but constant for every liquid. Therefore, the constant can be given as,

\[d = -0.1 \text{ to } -0.5 \]

To avoid turbulence, \(e = 0.7 \).

\[\frac{1}{2} \ \frac{d_i \ U_i^2}{d} \]
is the inlet velocity head. This is the dynamic pressure which pump should produce to accelerate the feed liquid from the position of rest to the inlet velocity \(U_i \).

\[\frac{(- \Delta P) \ g_c}{1 \ \frac{D_i} {D_c} \ \frac{D_o} {D_c} \ \frac{D_u} {D_c} \ \frac{L} {D_c} \ \frac{1} {D_c}} \]

It should be pointed out that this pressure drop correlation is valid only for hydrocyclones operating with an air core. When no air core is present this has in general the effect of increasing the pressure drop by a factor of two.

A SUMMARY OF THE UTILITIES OF THE EQUATIONS PRESENTED

Bradley [1]:

\[\frac{(- \Delta P) \ g_c}{\frac{1}{2} \ \frac{D_i} {D_c} \ \frac{D_o} {D_c} \ \frac{D_u} {D_c} \ \frac{L} {D_c} \ \frac{1} {D_c}} = \frac{a^2}{m} \left[\left(\frac{D_c}{D_o} \right)^{2m} - 1 \right] \]
Dimensionless, applicable to any size of cyclone and any proportions provided that the flow pattern constants m and a are known and the relationship between a and Q is known. Is an approximation to simplify the mathematical form of the equation. The approximation is likely to cause error in the case of large overflow diameters. Use of a slightly different diameter ratio as suggested by Tarjan could be more correct. a and m are factors dependent on cyclone design and fluid properties. a is also dependent on flowrate.

De Gelder [2] : \[Q = b A_i \left(\frac{2 (-\Delta P)}{d_1} \right)^{0.5} \]

where \[b = \frac{b_\infty}{1 - \frac{j A_c}{6 A_i} \left(\frac{2}{N_{Re} \sin \theta} \right)^{0.5}} \]

b and j are factors dependent on cyclone design. The formula is dimensionless, applicable to any size of hydrocyclone. Probably limited to involute entry types though this should not be a severe limitation. Mathematically inconvenient in use.

Trawinski [3] : \[Q = K D_i D_o \left(\frac{(-\Delta P) g c}{d_1} \right)^{0.5} \]

where K is a factor which contains diameter ratios, friction loss and cone angle variables. Applicable to any size of hydrocyclone. Limited in use through insufficient published data on the constant K. Appears in the comparison of this table to predict a low pressure drop for large angle cones.
Chaston [4] : \[Q = 10 A_i \left(-\Delta P \right)^{0.5} \pm 20\% \]

\[Q \text{ (gal/min)}, \ A_i \text{ (in}^2\text{)}, \ (-\Delta P) \text{ (psi)} \]

Empirical, applicable to a wide range of sizes of production hydrocyclones, preferably of wide cone angle, (20 or more). Likely to predict high due to the use of plant feed pressure data. Ignores the effects of change in overflow diameter and should, therefore, be used with caution in cases where overflow diameter proportions differ markedly from normal.

Dahlstrom [5] : \[\frac{Q}{H^{0.5}} = 6.38 \left(D_o \cdot D_i \right)^{0.9} \]

\[Q \text{ (U. S. gal/min)}, \ H \text{ (ft of liquid)}, \ D_o \text{ and} \ D_i \text{ (in)} \] Constant later given as varying from 5.5 to 6.5, being higher with smaller cone angles or longer cylinder lengths. Original equation determined empirically for a range of variations in \(D_o/D_i \) of 0.6 to 2.0. Widely and successfully applied.

Elcox [6] : \[Q = 24.7 K D_i^2 \left(-\Delta P \right)/d_i^{0.5} \]

where \(K \) the discharge coefficient is 0.35.

\[Q \text{ (gal/min)}, \ D_i \text{ (in)}, \ (-\Delta P) \text{ (psi)}, \ d_i \text{ (g/cc).} \]

Empirical, applicable to a wide range of sizes of production hydrocyclones, preferably of wide cone angle. Ignores the effects of change in overflow diameter and should therefore, be used with caution in cases where overflow diameter proportions differ markedly from normal.

Haas [7] : \[H = \frac{0.07 Q^{2.27}}{D_c^{0.8} D_i^{1.3} D_o^{2.0}} \]

\[Q \text{ (U.S. gal/min)}, \ H(\text{ft of liquid}), \ D(\text{in}). \]

Possibly limited to small diameter hydro-
cyclones, but may be of wider application. Takes no account of length or angle effects.

Yoshioka and Hotta [8] \[\frac{(- \Delta P) g_c}{U_i^2 d_i} = \frac{54.3 (D_i/D_c)^{2.8}}{(D_o/D_c)^{1.9}}\]

Dimensionless, applicable to medium diameter hydrocyclones though possibly of wider application particularly since aperture effects are introduced with a relative size term rather than an absolute size term. Takes no account of length or angle effects.

Rietema [9, 10] \[\frac{(- \Delta P)}{d_i U_i^2} = k_i \left(\frac{D_i}{D_o}\right)^{k_2} \left(\frac{D_c}{L}\right)^{0.7} \frac{1}{(1 - R_t)^{0.8}}\]

at \(N_{Re}\) inlet = 25000 . Dimensionless; correlation developed from data on a single diameter of hydrocyclone though this should not be restrictive. Appears to be accurate, but accuracy is limited by necessity to interpolate values for constants, given graphically. The effects of alteration in hydrocyclone length are covered more adequately than by any of the other empirical equations.

The equation given in this article applicable to any size of hydrocyclone and any design, accurately.
REFERENCES

ÖZET

Prix de l'abonnement annuel

Turquie : 15 TL ; Étranger : 30 TL.
Prix de ce numéro : 5 TL (pour la vente en Turquie).
Prière de s'adresser pour l'abonnement à : Fen Fakültesi Dekanlığı
Ankara, Turquie.