Renal arteriovenous malformations (RAVM) are a relatively rare congenital malformation (1-7). They usually remain asymptomatic during lifetime. Most published studies reported on sonographic and color Doppler findings (2,7), angiographic studies (1,4) or computed tomographic findings (11,13). Herein we present a case of congenital RAVM which was diagnosed by multidetector row computed tomography angiography (MDCTA) and a brief review of the literature. To the best of our knowledge, this is the only case reported so far in the diagnosis of the congenital RAVM using MDCTA.

Case Report

A 41-year-old woman was referred for evaluation of pain in her right flank which had appeared a few days earlier. 2 years ago, she had a attack of renal colic accompanied by microscopic haematuria. Some investigations of the urinary tract, i.e. intravenous pyelography (IVP) and ultrasound (US) could not disclose the cause of haematuria. Because spontaneous resolved of the right flank pain and haematuria, the patient is being treated conservatively. At latest admission, clinical examination showed no abnormalities. No abnormal bruit was heard during abdominal auscultation. Blood pressure, urinanalysis and culture, and serum hematologic and biochemical indices were within normal limits. The patient had no history of trauma, biopsy or renal disease/injury. Renal US and color-duplex Doppler US were performed with a Toshiba US unit (Aplio 80, Toshiba, Tokyo, Japan). US images of the right kidney showed anecic cystic mass in the upper pole (Figure 1). The color Doppler image demonstrated a high blood flow and a mosaic-like vascular area with posterior color spots (tissue vibration) which seemed compatible with a vascular malformation (Figure 2). Spectral analysis with pulsed Doppler sound increased velocity and decreased resistance in the feeding artery and arterial pulsations in the draining vein. Renal MDCTA was...
Congenital Renal Arteriovenous Malformation: Diagnosis With MDCT Angiography

performed with a 16 channel MDCT scanner (Lightspeed 16, GE Medical Systems, Milwaukee, WI, USA). The scan parameters were 16x 1.25-mm detector configuration, 1,25 mm section thickness, 1,25 mm reconstruction interval, gantry rotation time 0.5 s, pitch 0.938, 400 mAs, 120 Kv. The region of interest for scanning was adjusted from suprarenal abdominal aorta to the iliac artery bifurcation. After insertion of 18-gauge catheter in to an antecubital vein, 120 mL of ioversol 300mg I/mL (Optiray, Mallincordt, St. Louis, MO, USA) was injected with an automatic injector at a rate of 4 mL/s. All CT data were transferred to a Workstation (Advantage Windows 4.2, GE Medical Systems) for three-dimensional (3D) reconstructions (multiplanar reformat, maximum intensity projection and volume rendering). MDCT angiography was revealed early opacification of the right renal vein (thin arrow) and inferior vena cava is seen. Axial thick-slab maximum-intensity projection (a) and volume-rendered reconstructed display seen from oblique posterior perspective (b).

renal angiography confirmed the diagnosis and thus no additional imaging was obtained. Because the patient had no further symptoms and refused the treatment, we could not perform arterial embolization. In the follow-up 3 months after, the patient remained free of symptoms. We will continue follow-up her.

Discussion

RAVMs are a rare cause of haematuria (1). RAVMs consist of multiple tortuous communications between arteries and veins without interlaying capillaries. These tortous, varix-like vessels are immediately beneath the urothelium, leading to haematuria as the presenting finding in as many as 72% of cases (5). The reported prevalence of RAVMs is as low as 0.04 % (8), but the true prevalence might be higher because many RAVMs remain clinically asymptomatic. Other presentations may be systolic or diastolic hypertension and may also present as high output cardiac failure (4). Our patient never had hypertension or cardiac failure symptoms. Macmillan and Robinette proposed a clinical classification of congenital RAVMs, including three subtypes based on location and size: an angiomatous type with a size smaller than 1 cm and a peripheral location; a cirsoid type with a size larger than 1 cm and peripelvic location; and an idiopathic type with a hilar location and size larger than 1 cm. The first and second types seem to correspond to true AVMs differing in size and location, and the third type seems to be identical to arteriovenous fistulae (1). Naganuma et al (2) demonstrated that RAVM exhibit findings similar to postbiopsy arteriovenous fistulas. The reported findings of postbiopsy arteriovenous fistula are (i) an area of color mosaic appearance with tissue vibration, ii) increased flow velocities and decreased resistive indexes in the supplying artery, iii) arterIALIZATION of the draining vein, and iii) no abnormalities or small cystic lesions on gray-scale US. Regardless of whether the renal AVM was spontaneous or secondary, they found that gray-scale and color Doppler US showed similar findings. Also they concluded that US was not diagnostic and color Doppler US should be performed immediately in patients with hematuria. They were able to identify cirsoid AVMs in five of five patients with Doppler US before the performance of catheter angiography. Importantly, no lesions were detected with gray-scale US alone, even with the knowledge of the location of the AVM. The lesions in this series were all identified on CT, but defining the communicating renal artery and draining vein was poor (5). Angiographically, a true RAVM has a characteristic cirsoid appearance, with tortuous small channels and multiple fistulous connections. The main angiographic feature is the simultaneous appearance of contrast in the main renal artery and vein. RAVMs usually re-
receive blood supply from two or more lobar vascular tributaries (11).

On CT, RAVM is imaged as a mass of vascular density located in the renal sinus and surrounding the pelvicalicetal system. In addition, the renal vein and left gonadal vein were often dilated. However, CT presentation of the se lesions depends on the level of contrast medium in the blood stream, the speed of infusion, the amount of contrast material used, and the time elapsed until images are taken (11). Few studies regarding imaging of AVMs exist and most series are small (5). To the best of our knowledge, diagnosis of RAVMs with MDCTA has not been reported. MDCT offers many advantages for image quality in comparison with single slice CT. MDCT scanners allow for fast investigation with high spatial resolution. Small slice thickness improves the detection of small structures and allows better discrimination of solid and cystic structures as partial-volume effect diminish. Different phase of contrast-uptake can be differentiated (arterial, cortico-meduller, nephrographic and excretory phase). For this reason, MDCT of the kidney has become very valuable tool in urology, but a careful protocol strategy is mandatory (9). MDCT represents an important clinical tool that is replacing, in many institutions, catheter based angiography in the evaluation of renal vasculature (14). DSA has been considered the gold standard for evaluation of renal arteries; nevertheless, this procedure may carry some complications which should also be considered for patients with seconder hypertensi-
on. A noninvasive imaging technique is therefore desirable. Thus, MDCTA is currently the preferred modality. Management of congenital RAVMs is generally conservative. Most congenital AVMs are small and asymptomatic, and some close spontaneously. Transcatheter arterial embolization is the treatment of choice if the RAVM is accompanied by significant hematuria, severe hypertension, hemorrhage, or high-output cardiac failure. Large congenital AVMs may require surgical removal (7). Kubota et al (10) emphasized the necessity of careful follow-up, because spontaneous regression of RAVM may occur relatively rarely.

In conclusion, RAVMs are a rare cause of haematuria. We suggest that when surgical or interventional therapy is not considered, renal MDCTA should be performed to diagnosis of the AVM.

REFERENCES