Actions of internal groupoids in the category of Leibniz algebras

dc.contributor.authorŞahan, Tunçar
dc.contributor.authorErciyes, Ayhan
dc.contributor.departmentOthertr_TR
dc.contributor.facultyOthertr_TR
dc.date.accessioned2021-10-28T07:10:38Z
dc.date.available2021-10-28T07:10:38Z
dc.date.issued2019-02-01
dc.description.abstractThe aim of this paper is to characterize the notion of internal category (groupoid) in the category of Leibniz algebras and investigate some properties of well-known notions such as covering groupoids and groupoid operations (actions) in this category. Further, for a fixed internal groupoid G in the category of Leibniz algebras, we prove that the category of covering groupoids of G and the category of internal groupoid actions of G on Leibniz algebras are equivalent. Finally, we interpret the corresponding notion of covering groupoids in the category of crossed modules of Leibniz algebras.tr_TR
dc.description.indexTrdizintr_TR
dc.identifier.endpage632tr_TR
dc.identifier.issn/e-issn2618-6470
dc.identifier.issue1tr_TR
dc.identifier.startpage619tr_TR
dc.identifier.urihttps://doi.org/10.31801/cfsuasmas.453582tr_TR
dc.identifier.urihttp://hdl.handle.net/20.500.12575/75805
dc.identifier.volume68tr_TR
dc.language.isoentr_TR
dc.publisherAnkara Üniversitesi Fen Fakültesitr_TR
dc.relation.isversionof10.31801/cfsuasmas.453582tr_TR
dc.relation.journalCommunications Faculty of Sciences University of Ankara Series A1 Mathematics and Statisticstr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıtr_TR
dc.subjectLeibniz algebratr_TR
dc.subjectGroupoid actiontr_TR
dc.subjectCoveringtr_TR
dc.titleActions of internal groupoids in the category of Leibniz algebrastr_TR
dc.typeArticletr_TR

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
49.pdf
Size:
366.21 KB
Format:
Adobe Portable Document Format
Description:
Dergi
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: