On the Lipschitz stability of inverse nodal problem for Dirac system

dc.contributor.authorYılmaz, Emrah
dc.contributor.authorKemaloğlu, Hikmet
dc.contributor.departmentOthertr_TR
dc.contributor.facultyOthertr_TR
dc.date.accessioned2021-11-30T07:54:05Z
dc.date.available2021-11-30T07:54:05Z
dc.date.issued2021-06-30
dc.description.abstractInverse nodal problem on Dirac operator is determination problem of the parameters in the boundary conditions, number m and potential function V by using a set of nodal points of a component of two component vector eigenfunctions as the given spectral data. In this study, we solve a stability problem using nodal set of vector eigenfunctions and show that the space of all V functions is homeomorphic to the partition set of all space of asymptotically equivalent nodal sequences induced by an equivalence relation. Moreover, we give a reconstruction formula for the potential function as a limit of a sequence of functions and associated nodal data of one component of vector eigenfunction. Our technique depends on the explicit asymptotic expressions of the nodal parameters and, it is basically similar to [1, 2] which is given for Sturm-Liouville and Hill's operators, respectively.tr_TR
dc.description.indexTrdizintr_TR
dc.identifier.endpage356tr_TR
dc.identifier.issn/e-issn2618-6470
dc.identifier.issue1tr_TR
dc.identifier.startpage341tr_TR
dc.identifier.urihttps://doi.org/10.31801/cfsuasmas.733215tr_TR
dc.identifier.urihttp://hdl.handle.net/20.500.12575/76483
dc.identifier.volume70tr_TR
dc.language.isoentr_TR
dc.publisherAnkara Üniversitesi Fen Fakültesitr_TR
dc.relation.isversionof10.31801/cfsuasmas.733215tr_TR
dc.relation.journalCommunications Faculty of Sciences University of Ankara Series A1 Mathematics and Statisticstr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıtr_TR
dc.subjectDirac Systemtr_TR
dc.subjectinverse nodal problemtr_TR
dc.subjectLipschitz stabilitytr_TR
dc.titleOn the Lipschitz stability of inverse nodal problem for Dirac systemtr_TR
dc.typeArticletr_TR

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
26.pdf
Size:
396.62 KB
Format:
Adobe Portable Document Format
Description:
Dergi
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: