Efficient Chebyshev Economization for Elementary Functions
dc.contributor.author | Bekir, Esmat | |
dc.contributor.department | Other | tr_TR |
dc.contributor.faculty | Other | tr_TR |
dc.date.accessioned | 2021-11-30T11:10:03Z | |
dc.date.available | 2021-11-30T11:10:03Z | |
dc.date.issued | 2019-06-30 | |
dc.description.abstract | This paper presents economized power series for trigonometric and hyperbolic functions. It determines the smallest range over which a function need to be computed and scales the Chebyshev polynomials accordingly. Thus reduced degree polynomials (and hence reduced computations) can be obtained while maintaining the same accuracy as those unscaled higher degree polynomials. | tr_TR |
dc.description.index | Trdizin | tr_TR |
dc.identifier.endpage | 56 | tr_TR |
dc.identifier.issn/e-issn | 2618-6470 | |
dc.identifier.issue | 2 | tr_TR |
dc.identifier.startpage | 33 | tr_TR |
dc.identifier.uri | http://hdl.handle.net/20.500.12575/76512 | |
dc.identifier.volume | 69 | tr_TR |
dc.language.iso | en | tr_TR |
dc.publisher | Ankara Üniversitesi Fen Fakültesi | tr_TR |
dc.relation.journal | Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Başka Kurum Yazarı | tr_TR |
dc.subject | Chebyshev polynomial | tr_TR |
dc.subject | Economization | tr_TR |
dc.subject | Trigonometric functions | tr_TR |
dc.title | Efficient Chebyshev Economization for Elementary Functions | tr_TR |
dc.type | Article | tr_TR |