Structural derivatives on time scales
dc.contributor.author | Bayour, Benaoumeur | |
dc.contributor.author | Torres, Delfim F. M. | |
dc.contributor.department | Other | tr_TR |
dc.contributor.faculty | Other | tr_TR |
dc.date.accessioned | 2021-11-03T12:21:27Z | |
dc.date.available | 2021-11-03T12:21:27Z | |
dc.date.issued | 2019-02-01 | |
dc.description.abstract | We introduce the notion of structural derivative on time scales. The new operator of differentiation unifies the concepts of fractal and fractional order derivative and is motivated by lack of classical differentiability of some self-similar functions. Some properties of the new operator are proved and illustrated with examples. | tr_TR |
dc.description.index | Trdizin | tr_TR |
dc.identifier.endpage | 1196 | tr_TR |
dc.identifier.issn/e-issn | 2618-6470 | |
dc.identifier.issue | 1 | tr_TR |
dc.identifier.startpage | 1186 | tr_TR |
dc.identifier.uri | https://doi.org/10.31801/cfsuasmas.513107 | tr_TR |
dc.identifier.uri | http://hdl.handle.net/20.500.12575/75871 | |
dc.identifier.volume | 68 | tr_TR |
dc.language.iso | en | tr_TR |
dc.publisher | Ankara Üniversitesi Fen Fakültesi | tr_TR |
dc.relation.isversionof | 10.31801/cfsuasmas.513107 | tr_TR |
dc.relation.journal | Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Başka Kurum Yazarı | tr_TR |
dc.subject | Hausdorff derivative of a function with respect to a fractal measure | tr_TR |
dc.subject | Structural and fractal derivatives | tr_TR |
dc.subject | Self-similarity | tr_TR |
dc.title | Structural derivatives on time scales | tr_TR |
dc.type | Article | tr_TR |