Makine Öğrenmesi Yaklaşımıyla e-Belgelere Standart Dosya Plan Numaralarının Otomatik Olarak Atanması Üzerine Bir Çalışma
No Thumbnail Available
Files
Date
2019-12-31
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Ankara Üniversitesi
Abstract
Belge üretimindeki artış ve teknolojik olanaklar beraberinde yeni yönetim metotlarının gerekliliğini kaçınılmaz kılmıştır. Türkiye’de kamu kuruluşlarında üretilen belgeler Standart Dosya Planı’na uygun olarak düzenlenir ve yönetilirler. İlgili mevzuata koşut olarak resmi yazışmaların konusu Dosya Planından saptanmak ve konuyla bağlantılı kodları belgelere eklemek zorunluluktur. Bu kodların doğru seçilmesi, araştırma-soruşturma süreçlerinin sağlıklı işletilebilmesi ve erişim süreçlerinin başarılı şekilde sonuçlandırılabilmesi için oldukça gereklidir. Ancak kurumsal, kişisel veya yönetsel koşullara bağlı olarak belgelerin yaşam döngüsünü sekteye uğratacak yanlış kodlar verilebilmektedir. Bu tür yanlış uygulamaları minimize etmek ve belge sınıflandırmayı daha sağlıklı kılabilmek için yapay zekâ uygulamalarından yararlanılabilir.
Elektronik belge yönetimi sistemlerinde üretilen belgelere standart dosya plan kodlarının makine öğrenmesi yaklaşımıyla otomatik olarak atanması amaçlanan bu çalışma teorik ve analize dayalı olmak üzere iki kısımdan oluşmaktadır. İlkin teorik olarak standart dosya planından yararlanarak otomatik belge sınıflandırmasının oluşturduğu güçlükler tartışılmış, ardından makine öğrenmesi ile belgelerin sınıflandırılması üzerine analiz yapılmıştır. Çeşitli yönetsel ve ön yargısal bariyerlerin aşılmaması ve yanı sıra kurumsal arşiv gibi otorite bir birimin olmaması belge yönetimi, eğitimi ve denetimi boşluğunu oluşturduğu ve söz konusu bu durumunun otomatik sınıflamayı sekteye uğratacağı kaygısı, dolayısıyla belgeleri yeniden sınıflandırma gerekliliği küçük bir veri kümesi ile çalışmayı zorunlu kılmıştır. Bu nedenle çalışmada analiz edilen belgeler, bu çalışmanın araştırmacısına kurum içerisinde yönlendirilen son altı aylık belgelerden oluşmaktadır. Toplamda 265 belgenin yeniden sınıflandırılması neticesinde tekil konudaki belgeler kapsam dışı bırakılmıştır. Belgelerin gövde ve konu alanları üzerinde yapılan metin madenciliği teknikleri uygulanması sonucunda, 169 belgeden oluşan bir veri seti elde edilmiştir. Bu veri setinden her konudan oransal olmak koşuluyla rastgele yöntemle belgelerin üçte biri (1/3) sınıflandırmak için seçilmiştir. Sınıflandırılmış 112 belge ve sınıflandırmak üzere oluşturulmuş 57 belgeden ibaret bu veri seti üzerinde, makine öğrenmesinde kullanılan ve son zamanlarda bilgi sektöründe popüler olan Destek Vektör Makinesi [DVM (Support Vector Machine (SVM)] algoritması çalıştırılmıştır. Çalışma sonucunda manuel olarak yapılan sınıflama ile otomatik olarak yapılan çıkarımın isabet oranı % 87.72 olarak bulunmuştur. Bir diğer ifade ile belgelerin % 87.72’si makine öğrenmesi yaklaşımıyla doğru olarak sınıflanmıştır.
Description
Keywords
Makine öğrenmesi, Destek Vektör Makinesi, Metin Madenciliği