Generalized Burnside algebra of type B_{n}
dc.contributor.author | Arslan, Hasan | |
dc.contributor.author | Can, Himmet | |
dc.contributor.department | Other | tr_TR |
dc.contributor.faculty | Other | tr_TR |
dc.date.accessioned | 2021-11-11T07:22:58Z | |
dc.date.available | 2021-11-11T07:22:58Z | |
dc.date.issued | 2020-06-30 | |
dc.description.abstract | In this paper, we firstly give an alternative method to determine the size of C ( S n ) which is the set of elements of type S n in a finite Coxeter system ( W n , S n ) of type B n . We also show that all cuspidal classes of W n are actually the conjugate classes K λ for every λ ∈ D P + ( n ) . We then define the generalized Burnside algebra H B ( W n ) for W n and construct a surjective algebra morphism between H B ( W n ) and Mantaci-Reutenauer algebra M R ( W n ) . We obtain a set of orthogonal primitive idempotents e λ , λ ∈ D P ( n ) of H B ( W n ) , that is, all the characteristic class functions of W n . Finally, we give an effective formula to compute the number of elements of all the conjugate classes K λ , λ ∈ D P ( n ) of W n . | tr_TR |
dc.description.index | Trdizin | tr_TR |
dc.identifier.endpage | 265 | tr_TR |
dc.identifier.issn/e-issn | 2618-6470 | |
dc.identifier.issue | 1 | tr_TR |
dc.identifier.startpage | 252 | tr_TR |
dc.identifier.uri | https://doi.org/10.31801/cfsuasmas.599246 | tr_TR |
dc.identifier.uri | http://hdl.handle.net/20.500.12575/75985 | |
dc.identifier.volume | 69 | tr_TR |
dc.language.iso | en | tr_TR |
dc.publisher | Ankara Üniversitesi Fen Fakültesi | tr_TR |
dc.relation.isversionof | 10.31801/cfsuasmas.599246 | tr_TR |
dc.relation.journal | Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics | tr_TR |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Başka Kurum Yazarı | tr_TR |
dc.subject | Cuspidal Class | tr_TR |
dc.subject | Mantaci-Reutenauer Algebra | tr_TR |
dc.subject | Burnside Algebra | tr_TR |
dc.title | Generalized Burnside algebra of type B_{n} | tr_TR |
dc.type | Article | tr_TR |