Bivariate Bernstein polynomials that reproduce exponential functions

dc.contributor.authorBozkurt, Kenan
dc.contributor.authorÖzsaraç, Fırat
dc.contributor.authorAral, Ali
dc.contributor.departmentOthertr_TR
dc.contributor.facultyOthertr_TR
dc.date.accessioned2021-11-30T08:29:23Z
dc.date.available2021-11-30T08:29:23Z
dc.date.issued2021-06-30
dc.description.abstractIn this paper, we construct Bernstein type operators that reproduce exponential functions on simplex with one moved curved side. The operator interpolates the function at the corner points of the simplex. Used function sequence with parameters α and β not only are gained more modeling flexibility to operator but also satisfied to preserve some exponential functions. We examine the convergence properties of the new approximation processes. Later, we also state its shape preserving properties by considering classical convexity. Finally, a Voronovskaya-type theorem is given and our results are supported by graphics.tr_TR
dc.description.indexTrdizintr_TR
dc.identifier.endpage554tr_TR
dc.identifier.issn/e-issn2618-6470
dc.identifier.issue1tr_TR
dc.identifier.startpage541tr_TR
dc.identifier.urihttps://doi.org/10.31801/cfsuasmas.793968tr_TR
dc.identifier.urihttp://hdl.handle.net/20.500.12575/76503
dc.identifier.volume70tr_TR
dc.language.isoentr_TR
dc.publisherAnkara Üniversitesi Fen Fakültesitr_TR
dc.relation.isversionof10.31801/cfsuasmas.793968tr_TR
dc.relation.journalCommunications Faculty of Sciences University of Ankara Series A1 Mathematics and Statisticstr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıtr_TR
dc.subjectBernstein operatorstr_TR
dc.subjectExponential functionstr_TR
dc.subjectClassical and exponential convexitytr_TR
dc.titleBivariate Bernstein polynomials that reproduce exponential functionstr_TR
dc.typeArticletr_TR

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
39.pdf
Size:
1.72 MB
Format:
Adobe Portable Document Format
Description:
Dergi
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: